Breast cancer is one of the primary causes of death that is occurred in females around the world. So, the recognition and categorization of initial phase breast cancer are necessary to help the patients to have suitable action. However, mammography images provide very low sensitivity and efficiency while detecting breast cancer. Moreover, Magnetic Resonance Imaging (MRI) provides high sensitivity than mammography for predicting breast cancer. In this research, a novel Back Propagation Boosting Recurrent Wienmed model (BPBRW) with Hybrid Krill Herd African Buffalo Optimization (HKH-ABO) mechanism is developed for detecting breast cancer in an earlier stage using breast MRI images. Initially, the MRI breast images are trained to the system, and an innovative Wienmed filter is established for preprocessing the MRI noisy image content. Moreover, the projected BPBRW with HKH-ABO mechanism categorizes the breast cancer tumor as benign and malignant. Additionally, this model is simulated using Python, and the performance of the current research work is evaluated with prevailing works. Hence, the comparative graph shows that the current research model produces improved accuracy of 99.6% with a 0.12% lower error rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.