Thermoresponsive amphiphilic conetworks comprising poly(2-ethyl-2-oxazoline) (PEtOx), 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate segments have been studied as new platforms for delivery of drug with limited solubility. Series of conetworks of varied composition were synthesized and swelling kinetics in aqueous media and ethanol were followed. The platforms were loaded with the hydrophobic drug ibuprofen by swelling in its ethanol solution. The structure and properties of the drug carriers were investigated by scanning electron microscopy and differential scanning calorimetry. The release kinetics profiles of ibuprofen from the studied platform were established. The investigation proved the feasibility of the PEtOx-based amphiphilic conetworks as highly effective platforms for sustained ibuprofen delivery.
Crosslinked carriers based on cationic monomer [2-(acryloyloxy)ethyl]trimethylammonium chloride or 2-(dimethylamino)ethyl methacrylate were developed and investigated as new platform for ibuprofen transdermal delivery. Series of networks of varied composition and structure were synthesized and characterized by FTIR spectroscopy and following swelling kinetics in different solvents. Dermal safety tests to examine the skin irritation and sensitization potential of the network films were performed in vivo. Chosen network compositions were loaded with ibuprofen by swelling in its ethanol solution. The structures of the drug carriers were investigated by scanning electron microscopy. Ibuprofen release from the developed drug delivery systems was followed in phosphate buffer solution at 37 8C. The investigation proved the feasibility of the developed cationic copolymer networks as effective platforms with modified ibuprofen release for potential dermal application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.