Reconfigurable modular robots can exhibit different specializations by rearranging the same set of parts comprising them. Actuating modular robots can be complicated because of the many degrees of freedom that scale exponentially with the size of the robot. Effectively controlling these robots directly relates to how well they can be used to complete meaningful tasks. This paper discusses an approach for creating provably correct controllers for modular robots from high-level tasks defined with structured English sentences. While this has been demonstrated with simple mobile robots, the problem was enriched by considering the uniqueness of reconfigurable modular robots. These requirements are expressed through traits in the high-level task specification that store information about the geometry and motion types of a robot.Given a high-level problem definition for a modular robot, the approach in this paper deals with generating all lower levels of control needed to solve it. Information about different robot characteristics is stored in a library, and two tools for populating this library have been developed. The first approach is a physics-based simulator and gait creator for manual generation of motion gaits. The second is a genetic algorithm framework that uses traits to evaluate performance under various metrics. Demonstration is done through simulation and with the CKBot hardware platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.