In septic shock, systemic vasodilation and myocardial depression contribute to the systemic hypotension observed. Both components can be attributed to the effects of mediators that are released as part of the inflammatory response. We previously found that lysozyme (Lzm-S), released from leukocytes, contributed to the myocardial depression that develops in a canine model of septic shock. Lzm-S binds to the endocardial endothelium, resulting in the production of nitric oxide (NO), which, in turn, activates the myocardial soluble guanylate cyclase (sGC) pathway. In the present study, we determined whether Lzm-S might also play a role in the systemic vasodilation that occurs in septic shock. In a phenylephrine-contracted canine carotid artery ring preparation, we found that both canine and human Lzm-S, at concentrations similar to those found in sepsis, produced vasorelaxation. This decrease in force could not be prevented by inhibitors of NO synthase, prostaglandin synthesis, or potassium channel inhibitors and was not dependent on the presence of the vascular endothelium. However, inhibitors of the sGC pathway prevented the vasodilatory activity of Lzm-S. In addition, Aspergillus niger catalase, which breaks down H(2)O(2), as well as hydroxyl radical scavengers, which included hydroquinone and mannitol, prevented the effect of Lzm-S. Electrochemical sensors corroborated that Lzm-S caused H(2)O(2) release from the carotid artery preparation. In conclusion, these results support the notion that when Lzm-S interacts with the arterial vasculature, this interaction results in the formation of H(2)O(2), which, in turn, activates the sGC pathway to cause relaxation. Lzm-S may contribute to the vasodilation that occurs in septic shock.
In septic shock, cardiovascular collapse is caused by the release of inflammatory mediators. We previously found that lysozyme (Lzm-S), released from leukocytes, contributed to the myocardial depression and arterial vasodilation that develop in canine models of septic shock. To cause vasodilation, Lzm-S generates hydrogen peroxide (H(2)O(2)) that activates the smooth muscle soluble guanylate cyclase (sGC) pathway, although the mechanism of H(2)O(2) generation is not known. To cause myocardial depression, Lzm-S binds to the endocardial endothelium, resulting in the formation of nitric oxide (NO) and subsequent activation of myocardial sGC, although the initial signaling event is not clear. In this study, we examined whether the myocardial depression produced by Lzm-S was also caused by the generation of H(2)O(2) and whether Lzm-S could intrinsically generate H(2)O(2) as has been described for other protein types. In a canine ventricular trabecular preparation, we found that the peroxidizing agent Aspergillus niger catalase, that would breakdown H(2)O(2), prevented Lzm-S- induced decrease in contraction. We also found that compound I, a species of catalase formed during H(2)O(2) metabolism, could contribute to the NO generation caused by Lzm-S. In tissue-free experiments, we used a fluorometric assay (Ultra Amplex red H(2)O(2) assay) and electrochemical sensor techniques, respectively, to measure H(2)O(2) generation. We found that Lzm-S could generate H(2)O(2) and, furthermore, that this generation could be attenuated by the singlet oxygen quencher sodium azide. This study shows that Lzm-S, a mediator of sepsis, is able to intrinsically generate H(2)O(2). Moreover, this generation may activate H(2)O(2)-dependent pathways leading to cardiovascular collapse in septic shock.
Although hydrogen peroxide (H2O2) is a well-described reactive oxygen species that is known for its cytotoxic effects and associated tissue injury, H2O2 has recently been established as an important signaling molecule. We previously demonstrated that lysozyme (Lzm-S), a mediator of sepsis that is released from leukocytes, could produce vasodilation in a phenylephrine-constricted carotid artery preparation by H2O2 signaling. We found that Lzm-S could intrinsically generate H2O2 and that this generation activated H2O2-dependent pathways. In the present study, we used this carotid artery preparation as a bioassay to define those antioxidants that could inhibit Lzm-S's vasodilatory effect. We then determined whether this antioxidant could reverse the hypotension that developed in an Escherichia coli bacteremic model. Of the many antioxidants tested, we found that ethyl gallate (EG), a nonflavonoid phenolic compound, was favorable in inhibiting Lzm-S-induced vasodilation. In our E. coli model, we found that EG reversed the hypotension that developed in this model and attenuated end-organ dysfunction. By fluorometric H2O2 assay and electrochemical probe techniques, we showed that EG could scavenge H2O2 and that it could reduce H2O2 production in model systems. These results show that EG, an antioxidant that was found to scavenge H2O2 in vitro, was able to attenuate cardiovascular dysfunction in a canine in vivo preparation. Antioxidants such as EG may be useful in the treatment of hemodynamic deterioration in septic shock.
These results suggest that phenolic antioxidants, such as ethyl gallate, that inhibit hydrogen peroxide signaling, may represent an alternative class of vasopressors for use in septic shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.