Eukaryotic polyamine transport systems have not yet been characterized at the molecular level. We have used transposon mutagenesis to identify genes controlling polyamine transport in Saccharomyces cerevisiae. A haploid yeast strain was transformed with a genomic minitransposon-and lacZ-tagged library, and positive clones were selected for growth resistance to methylglyoxal bis(guanylhydrazone) (MGBG), a toxic polyamine analog. A 747-bp DNA fragment adjacent to the lacZ fusion gene rescued from one MGBG-resistant clone mapped to chromosome X within the coding region of a putative Ser/Thr protein kinase gene of previously unknown function (YJR059w, or STK2). A 304-amino-acid stretch comprising 11 of the 12 catalytic subdomains of Stk2p is Ϸ83% homologous to the putative Pot1p/Kkt8p (Stk1p) protein kinase, a recently described activator of low-affinity spermine uptake in yeast. Saturable spermidine transport in stk2::lacZ mutants had an approximately fivefold-lower affinity and twofold-lower V max than in the parental strain. Transformation of stk2::lacZ cells with the STK2 gene cloned into a single-copy expression vector restored spermidine transport to wild-type levels. Single mutants lacking the catalytic kinase subdomains of STK1 exhibited normal parameters for the initial rate of spermidine transport but showed a time-dependent decrease in total polyamine accumulation and a low-level resistance to toxic polyamine analogs. Spermidine transport was repressed by prior incubation with exogenous spermidine. Exogenous polyamine deprivation also derepressed residual spermidine transport in stk2::lacZ mutants, but simultaneous disruption of STK1 and STK2 virtually abolished high-affinity spermidine transport under both repressed and derepressed conditions. On the other hand, putrescine uptake was also deficient in stk2::lacZ mutants but was not repressed by exogenous spermidine. Interestingly, stk2::lacZ mutants showed increased growth resistance to Li ؉ and Na ؉ , suggesting a regulatory relationship between polyamine and monovalent inorganic cation transport. These results indicate that the putative STK2 Ser/Thr kinase gene is an essential determinant of high-affinity polyamine transport in yeast whereas its close homolog STK1 mostly affects a lower-affinity, low-capacity polyamine transport activity.
Mammalian polyamine transporters have not thus far been biochemically characterized. Since essential carboxy groups in the polyamine carrier might participate in the transport process, the ability of two different carbodi-imides to affect [3H]spermidine uptake was assessed in Chinese hamster ovary cells. Both the hydrophobic 1,3-dicyclohexylcarbodi-imide (DCC) and the more polar 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide (EDC) irreversibly inhibited spermidine transport with EC50 values of 11 +/- 4 and 96 +/- 16 microM after 30 min at 22 degrees C respectively. Prior treatment with EDC in the absence of substrate decreased both the Vmax and K(m) for spermidine uptake in a time- and concentration-dependent manner. Spermidine-transport inactivation by EDC (1 mM) was temperature-dependent, with 60 and 90% inhibition observed after 10 min at 22 and 37 degrees C respectively. Spermine (10 microM) almost fully protected against spermidine-transport inactivation by EDC at 22 degrees C, and decreased the rate of inactivation at 37 degrees C by about 80%. Putrescine, spermidine and spermine were all effective in protecting against EDC-mediated inactivation of [3H]spermidine and [3H]putrescine uptake at 22 degrees C with EC50 values estimated at 10, 1 and less than 1 microM respectively. The nucleophile glycine ethyl ester (up to 50 mM) prevented the inhibition brought about by 1 mM EDC. Inhibition by 1 mM EDC was greater at pH 7.2 than at pH 5.8 (89 +/- 3 compared with 44 +/- 5%), whereas the converse was true for 100 microM DCC (81 +/- 3 compared with 92 +/- 5%). On the other hand, spermine did not protect against inactivation of spermidine uptake by DCC. Moreover, DCC, but not EDC, inhibited Na(+)-dependent amino acid uptake. The present data indicate that (i) EDC and DCC inhibit polyamine transport through distinct mechanisms, (ii) substrate binding occludes one or several carboxy groups lying in a polar environment of the carrier and (iii) these carboxyl residues might be activated by EDC to crosslink a neighbouring nucleophile side group, resulting in a conformation of the polyamine carrier which is inactive for transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.