Background Sedentary behavior (SB) is common after cancer surgery and may negatively affect recovery and quality of life, but postoperative symptoms such as pain can be a significant barrier to patients achieving recommended physical activity levels. We conducted a single-arm pilot trial evaluating the usability and acceptability of a real-time mobile intervention that detects prolonged SB in the perioperative period and delivers prompts to walk that are tailored to daily self-reported symptom burden. Objective The aim of this study is to develop and test a mobile technology-supported intervention to reduce SB before and after cancer surgery, and to evaluate the usability and feasibility of the intervention. Methods A total of 15 patients scheduled for abdominal cancer surgery consented to the study, which involved using a Fitbit smartwatch with a companion smartphone app across the perioperative period (from a minimum of 2 weeks before surgery to 30 days postdischarge). Participants received prompts to walk after any SB that exceeded a prespecified threshold, which varied from day to day based on patient-reported symptom severity. Participants also completed weekly semistructured interviews to collect information on usability, acceptability, and experience using the app and smartphone; in addition, smartwatch logs were examined to assess participant study compliance. Results Of eligible patients approached, 79% (15/19) agreed to participate. Attrition was low (1/15, 7%) and due to poor health and prolonged hospitalization. Participants rated (0-100) the smartphone and smartwatch apps as very easy (mean 92.3 and 93.2, respectively) and pleasant to use (mean 93.0 and 93.2, respectively). Overall satisfaction with the whole system was 89.9, and the mean System Usability Scale score was 83.8 out of 100. Overall compliance with symptom reporting was 51% (469/927 days), decreasing significantly from before surgery (264/364, 73%) to inpatient recovery (32/143, 22%) and postdischarge (173/420, 41%). Overall Fitbit compliance was 70% (653/927 days) but also declined from before surgery (330/364, 91%) to inpatient (51/143, 36%) and postdischarge (272/420, 65%). Conclusions Perioperative patients with cancer were willing to use a smartwatch- and smartphone-based real-time intervention to reduce SB, and they rated the apps as very easy and pleasant to use. Compliance with the intervention declined significantly after surgery. The effects of the intervention on postoperative activity patterns, recovery, and quality of life will be evaluated in an ongoing randomized trial.
Background Cancer treatments can cause a variety of symptoms that impair quality of life and functioning but are frequently missed by clinicians. Smartphone and wearable sensors may capture behavioral and physiological changes indicative of symptom burden, enabling passive and remote real-time monitoring of fluctuating symptoms Objective The aim of this study was to examine whether smartphone and Fitbit data could be used to estimate daily symptom burden before and after pancreatic surgery. Methods A total of 44 patients scheduled for pancreatic surgery participated in this prospective longitudinal study and provided sufficient sensor and self-reported symptom data for analyses. Participants collected smartphone sensor and Fitbit data and completed daily symptom ratings starting at least two weeks before surgery, throughout their inpatient recovery, and for up to 60 days after postoperative discharge. Day-level behavioral features reflecting mobility and activity patterns, sleep, screen time, heart rate, and communication were extracted from raw smartphone and Fitbit data and used to classify the next day as high or low symptom burden, adjusted for each individual’s typical level of reported symptoms. In addition to the overall symptom burden, we examined pain, fatigue, and diarrhea specifically. Results Models using light gradient boosting machine (LightGBM) were able to correctly predict whether the next day would be a high symptom day with 73.5% accuracy, surpassing baseline models. The most important sensor features for discriminating high symptom days were related to physical activity bouts, sleep, heart rate, and location. LightGBM models predicting next-day diarrhea (79.0% accuracy), fatigue (75.8% accuracy), and pain (79.6% accuracy) performed similarly. Conclusions Results suggest that digital biomarkers may be useful in predicting patient-reported symptom burden before and after cancer surgery. Although model performance in this small sample may not be adequate for clinical implementation, findings support the feasibility of collecting mobile sensor data from older patients who are acutely ill as well as the potential clinical value of mobile sensing for passive monitoring of patients with cancer and suggest that data from devices that many patients already own and use may be useful in detecting worsening perioperative symptoms and triggering just-in-time symptom management interventions.
BACKGROUND Smartphone and wearable devices are widely used in behavioral and clinical research to collect longitudinal data that, along with ground truth data, are used to create models of human behavior. Mobile sensing researchers often program analysis code from scratch even though many research teams collect data from similar mobile sensors, platforms and devices. As a result, the quality of code varies, code is often not shared alongside publications, and when it is, it might not be stored on a version control system and most of the time there is no guarantee the development environment can be replicated. This makes it difficult for other scientists to read, reuse, audit, and reproduce a publication’s code and its results. OBJECTIVE We present RAPIDS, a reproducible pipeline to standardize the preprocessing, feature extraction, analysis, visualization, and reporting of data streams coming from mobile sensors. METHODS RAPIDS is formed by a group of R and Python scripts that are executed on top of reproducible virtual environments, orchestrated by Snakemake and organized following the cookiecutter data science project. Its development has been and will be informed by public discussions with the mobile sensing research community. RESULTS We share open source, documented, extensible and tested code to preprocess and extract behavioral features from data collected with the AWARE Framework in Android and iOS smartphones as well as Fitbit devices. We also provide a file structure and development environment that other researchers can follow to publish their own models, visualizations, and reports. CONCLUSIONS RAPIDS allows researchers to process mobile sensor data in a rigorous and reproducible way. This saves time and effort during the data analysis phase of a project and makes it easier to share an analysis workflow alongside publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.