The amino acid serine, despite its diverse metabolic roles, can become toxic when present in excess. Indeed, many bacteria rapidly deaminate exogenously supplied serine into pyruvate and ammonia, even at the expense of biomass production. Here we report a surprising case in which endogenously produced serine must be detoxified in order for the bacterium Escherichia coli to survive. Specifically, we show that E. coli cells lacking the sdaCB operon, which encodes a serine transporter and a serine deaminase, lyse upon glucose depletion when serine is absent from the growth medium. Lysis can be prevented by omission of glycine or by inhibition of the glycine cleavage system, suggesting that activation of glycine catabolism upon glucose depletion causes a transient increase in intracellular serine levels. Heterologous expression of the serine transporter SdaC is sufficient to prevent lysis, indicating a dominant role for serine export, rather than deamination, in mitigating serine toxicity. Since lysis can be modulated by altering alanine availability, we further propose that mis-incorporation of serine instead of alanine into peptidoglycan crosslinks is the cause of lysis. Together, our results reveal that SdaC-mediated detoxification of intracellularly produced serine plays a protective role during sudden shifts in nutrient availability in bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.