Integrated Pest Management (IPM) provides an illustration of how crop protection has (or has not) evolved over the past six decades. Throughout this period, IPM has endeavored to promote sustainable forms of agriculture, pursued sharp reductions in synthetic pesticide use, and thereby resolved myriad socio-economic, environmental, and human health challenges. Global pesticide use has, however, largely continued unabated, with negative implications for farmer livelihoods, biodiversity conservation, and the human right to food. In this review, we examine how IPM has developed over time and assess whether this concept remains suited to present-day challenges. We believe that despite many good intentions, hard realities need to be faced. 1) We identify the following major weaknesses: i) a multitude of IPM definitions that generate unnecessary confusion; ii) inconsistencies between IPM concepts, practice, and policies; iii) insufficient engagement of farmers in IPM technology development and frequent lack of basic understanding of its underlying ecological concepts. 2) By diverting from the fundamental IPM principles, integration of practices has proceeded along serendipitous routes, proven ineffective, and yielded unacceptable outcomes. 3) We show that in the majority of cases, chemical control still remains the basis of plant health programs. 4) Furthermore, IPM research is often lagging, tends to be misguided, and pays insufficient attention to ecology and to the ecological functioning of agroecosystems. 5) Since the 1960s, IPM rules have been twisted, its foundational concepts have degraded and its serious (farm-level) implementation has not advanced. To remedy this, we are proposing Agroecological Crop Protection as a concept that captures how agroecology can be optimally put to the service of crop protection. Agroecological Crop Protection constitutes an interdisciplinary scientific field that comprises an orderly strategy (and clear prioritization) of practices at the field, farm, and agricultural landscape level and a dimension of social and organizational ecology.
The soybean aphid, Aphis glycines (Matsumura), is native to eastern Asia and has recently invaded North America, where it is currently the most important insect pest of soybeans. The soybean aphid has spread rapidly within North America, presumably through a combination of active and passive (wind-aided) flight. Here, we studied the active flight potential of A. glycines under a range of environmental conditions using an aphid flight mill. Winged (alate) A. glycines were tested on a specially designed 32-channel, computer-monitored flight mill system. Aphids that were 12-24 h old exhibited the strongest flight behavior, with average flight durations of 3.3-4.1 h, which represented flight distances of 4.6-5.1 km. After the age of 72 h, A. glycines flight performance rapidly declined. The optimum temperature range for flight was 16-28 degrees C, whereas optimum relative humidity was 75%. Our findings show that A. glycines posseses a fairly strong active flight aptitude (ability and inclination) and point to the possibility of flight initiation under a broad range of environmental conditions. These results have the potential to aid forecasting and management protocols for A. glycines at the landscape level.
The Anthropocene is characterised by pervasive human‐inflicted impacts on a broad range of biota, including insects. In 2019, we reviewed scientific literature quantifying the prevalence and magnitude of insect declines in recent time. Here, drawing upon 40 additional long‐term studies, we add evidence that is consistent with our earlier review and some other reviews on the fate of insect populations globally. New data for Greenland, northern Africa, South America, eastern Asia and Australia complement studies from Europe and North America. Temporal trends in insect populations are now derived from 100 long‐term studies and refer mainly to the past three or four decades (median 33 years). Data from the 10 major insect taxonomic orders indicate that an average 37% of species are declining in numbers, while populations of 18% species are increasing; the latter taxa mainly involve agricultural herbivores and nuisance pests. Population changes are more pronounced among aquatic insect communities, where 42% of species are declining and 29% increasing. Such changes result in a decrease in biomass across taxa, except for Heteroptera. Changes in species richness and diversity indices are inconsistent and do not reflect intraspecific population changes over time. These trends are observed irrespective of taxon, geography or methodological approach, although a lack of long‐term monitoring records prevents a proper assessment for tropical regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.