SummaryLumpy skin disease, sheeppox and goatpox are high‐impact diseases of domestic ruminants with a devastating effect on cattle, sheep and goat farming industries in endemic regions. In this article, we review the current geographical distribution, economic impact of an outbreak, epidemiology, transmission and immunity of capripoxvirus. The special focus of the article is to scrutinize the use of currently available vaccines to investigate the resource needs and challenges that will have to be overcome to improve disease control and eradication, and progress on the development of safer and more effective vaccines. In addition, field evaluation of the efficacy of the vaccines and the genomic database available for poxviruses are discussed.
During 2006 the first outbreak of bluetongue ever recorded in northern Europe started in Belgium and the Netherlands, spreading to Luxemburg, Germany and north-east France. The virus overwintered (2006-2007) reappearing during May-June 2007 with greatly increased severity in affected areas, spreading further into Germany and France, reaching Denmark, Switzerland, the Czech Republic and the UK. Infected animals were also imported into Poland, Italy, Spain and the UK. An initial isolate from the Netherlands (NET2006/04) was identified as BTV-8 by RT-PCR assays targeting genome segment 2. The full genome of NET2006/04 was sequenced and compared to selected European isolates, South African vaccine strains and other BTV-8 strains, indicating that it originated in sub-Saharan Africa. Although NET2006/04 showed high levels of nucleotide identity with other 'western' BTV strains, it represents a new introduction and was not derived from the BTV-8 vaccine, although its route of entry into Europe has not been established.
Lumpy skin disease (LSD) is a devastating disease of cattle characterized by fever, nodules on the skin, lymphadenopathy and milk drop. Several haematophagous arthropod species like dipterans and ticks are suspected to play a role in the transmission of LSDV. Few conclusive data are however available on the importance of biting flies and horseflies as potential vectors in LSDV transmission. Therefore an in vivo transmission study was carried out to investigate possible LSDV transmission by Stomoxys calcitrans biting flies and Haematopota spp. horseflies from experimentally infected viraemic donor bulls to acceptor bulls. LSDV transmission by Stomoxys calcitrans was evidenced in 3 independent experiments, LSDV transmission by Haematopota spp. was shown in one experiment. Evidence of LSD was supported by induction of nodules and virus detection in the blood of acceptor animals. Our results are supportive for a mechanical transmission of the virus by these vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.