The driving force behind cell motility is the actin cytoskeleton. Filopodia and lamellipodia are formed by the polymerization and extension of actin filaments towards the cell membrane. This polymerization at the barbed end of the filament is balanced by depolymerization at the pointed end, recycling the actin in a 'treadmilling' process. One protein involved in this process is cofilin/actin-depolymerizing factor (ADF), which can depolymerize actin filaments, allowing treadmilling to occur at an accelerated rate. Cofilin/ADF is an actin-binding protein that is required for actin-filament disassembly, cytokinesis and the organization of muscle actin filaments. There is also evidence that cofilin/ADF enhances cell motility, although a direct requirement in vivo has not yet been shown. Here we show that Drosophila cofilin/ADF, which is encoded by the twinstar (tsr) gene, promotes cell movements during ovary development and oogenesis. During larval development, cofilin/ADF is required for the cell rearrangement needed for formation of terminal filaments, stacks of somatic cells that are important for the initiation of ovarioles. It is also required for the migration of border cells during oogenesis. These results show that cofilin/ADF is an important regulator of actin-based cell motility during Drosophila development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.