Artificial Neural Network (ANN) and time series data can be used for forecasting methods well. Artificial Neural Network is a method whose working principle is adapted from a mathematical model in humans or biological nerves. Neural networks are characterized by; (1) the pattern of connections between neurons (called architecture), (2) determining the weight of the connection (called training or learning), and (3) the activation function. The research objective was to obtain the best artificial neural network architecture, comparing the two methods of Backpropogation Neural Networks with the Radial Base Function Artificial Neural Network (RBF) method. This research is a research using real data (true experimental). This research was conducted at SMK Harapan Bangsa Kuala, which was obtained from 2015 to 2019. The results showed that for one iteration using the backpropagation method the result was 0,378197657 with a squared error 0.143033468, then the results achieved were not in accordance with the target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.