A multi-recipient key encapsulation mechanism, or mKEM, provides a scalable solution to securely communicating to a large group, and o↵ers savings in both bandwidth and computational cost compared to the trivial solution of communicating with each member individually. All prior works on mKEM are only limited to classical assumptions and, although some generic constructions are known, they all require specific properties that are not shared by most post-quantum schemes. In this work, we first provide a simple and e cient generic construction of mKEM that can be instantiated from versatile assumptions, including post-quantum ones. We then study these mKEM instantiations at a practical level using 8 post-quantum KEMs (which are lattice and isogeny-based NIST candidates), and CSIDH, and show that compared to the trivial solution, our mKEM o↵ers savings of at least one order of magnitude in the bandwidth, and make encryption time shorter by a factor ranging from 1.92 to 35. Additionally, we show that by combining mKEM with the TreeKEM protocol used by MLS -an IETF draft for secure group messaging -we obtain significant bandwidth savings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.