A case study and methodology is presented to shed the light on the different processes followed during the placement of a non-damaging isolation barrier in a group of highly naturally-fractured and vugular gas wells. The temporary isolation aims at isolating the wellbore from the troublesome formation and allow the removal of the original completion string and install a new redesigned one. The process helped putting the wells back on production with-out the need to stimulate any of them. This helped client to reduce the overall workover cost by 40% and proved to be successful and efficient to complete the required operation in a time-efficient. The operator had 4 wells with OH sections ranging from 40-80m which were completed in the late 1990's with no production packer. To preserve wellbore integrity the completion string needed to be pulled and replaced by a string with production packer and DH gauges. Visco-Elastic Surfactant (VES) and calcium CaCO3 (carbonate) used ubiquitously in field operations were tested for optimal design to fill highly fractured OH without damaging formation. Caliper logs were not available, and the presence of natural fractures posed a challenge to calculate the actual OH volume. A system was developed to carry the CaCO3 into the wellbore in stages and slickline was employed to measure fill after each stage. Once the OH was filled with CaCO3 and well would support a fluid column coil tubing was used to place an acid-soluble cement plug in the short interval between casing shoe and end of tubing (6-9m). The paper describes the optimization process followed to tune the CaCO3 pads composition, gel composition, mixing and placement technique. The first well in the campaign required more than 10 times the theoretical volume of CaCO3 to fill the open hole with multiple settling issues at surface. It was concluded the surfactant gel was likely carrying the CaCO3 into the fractures. The procedure was modified to tie in a line of breaker solution to the well head allowing sufficient viscosity of the fluid to carry the CaCO3 from surface but immediately lose viscosity and allow the CaCO3 to settle in the open hole without being carried into the formation. Specific coil tubing procedures were employed to allow the setting of ultra-short acid soluble cement plugs (<6m). All wells were successfully isolated to allow the safe workover of the completion string and returned to production with no loss of gas flow, with-out the need to stimulate after the work over. The campaign exhibited a new method of employing existing technologies to achieve the objective in a highly challenging and relatively new oilfield of Kurdistan. The campaign also demonstrated the benefit, in terms of saving time and cost because of extensive pre-execution planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.