Despite the vast number of modification sites mapped within mRNAs, known examples of consequential mRNA modifications remain rare. Here, we provide multiple lines of evidence to show that Ime4p, an N 6-methyladenosine (m 6 A) methyltransferase required for meiosis in yeast, acts by methylating a site in the 3′ UTR of the mRNA encoding Rme1p, a transcriptional repressor of meiosis. Consistent with this mechanism, genetic analyses reveal that IME4 functions upstream of RME1 . Transcriptome-wide, RME1 is the primary message that displays both increased methylation and reduced expression in an Ime4p-dependent manner. In yeast strains for which IME4 is dispensable for meiosis, a natural polymorphism in the RME1 promoter reduces RME1 transcription, obviating the requirement for methylation. Mutation of a single m 6 A site in the RME1 3′ UTR increases Rme1p repressor production and reduces meiotic efficiency. These results reveal the molecular and physiological consequences of a modification in the 3′ UTR of an mRNA.
BackgroundGene variants within regulatory regions are thought to be major contributors of the variation of complex traits/diseases. Genome wide association studies (GWAS), have identified scores of genetic variants that appear to contribute to human disease risk. However, most of these variants do not appear to be functional. Thus, the significance of the association may be brought up by still unknown mechanisms or by linkage disequilibrium (LD) with functional polymorphisms. In the present study, focused on functional variants related with the binding of microRNAs (miR), we utilized SNP data, including newly released 1000 Genomes Project data to perform a genome-wide scan of SNPs that abrogate or create miR recognition element (MRE) seed sites (MRESS).ResultsWe identified 2723 SNPs disrupting, and 22295 SNPs creating MRESSs. We estimated the percent of SNPs falling within both validated (5%) and predicted conserved MRESSs (3%). We determined 87 of these MRESS SNPs were listed in GWAS association studies, or in strong LD with a GWAS SNP, and may represent the functional variants of identified GWAS SNPs. Furthermore, 39 of these have evidence of co-expression of target mRNA and the predicted miR. We also gathered previously published eQTL data supporting a functional role for four of these SNPs shown to associate with disease phenotypes. Comparison of FST statistics (a measure of population subdivision) for predicted MRESS SNPs against non MRESS SNPs revealed a significantly higher (P = 0.0004) degree of subdivision among MRESS SNPs, suggesting a role for these SNPs in environmentally driven selection.ConclusionsWe have demonstrated the potential of publicly available resources to identify high priority candidate SNPs for functional studies and for disease risk prediction.
Our results indicate that longer habitual sleep duration is associated with lower BMI and age- and sex-specific favorable dietary behaviors. Differences in the relative intake of specific macronutrients associated with short sleep duration could, at least in part, explain previously reported associations between short sleep duration and chronic metabolic abnormalities. In addition, the influence of obesity-associated CLOCK variants on the association between sleep duration and macronutrient intake suggests that longer habitual sleep duration could ameliorate the genetic predisposition to obesity via a favorable dietary profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.