Published ab initio and pseudopotential calculations for the dialkali halide systems suggest that the preferred colinear geometry is for the metal to approach the metal end of the alkali halide. Here, ab initio calculations on the Li 2 F system reveal that the well depth on the halide side in this radical is much deeper and is a local saddle point associated with the ionic nonlinear global minima. Although many features of the pseudopotential surfaces are confirmed, significant differences are apparent including the existence of a linear excited A 2 ⌺ u + state instead of a triangular one, a considerably deeper global minimum some 50% lower in energy and a close approach between the X 2 A 1 and the A 2 ⌺ u + states, with the A 2 ⌺ u + minimum 87 kJ mol −1 below the ground state asymptote. All the results can be rationalised as the avoided crossings between a long range, covalent potential dominant within the LiLiF geometry and an ionic state that forms the global minimum. Calculations on the third 2 AЈ potential indicate that even for Li+ LiF collisions at ultracold temperatures the collision dynamics could involve as many as three electronic states.
Ab initio calculations for the strongly exoergic Li 2 + F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li 2 molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.