We propose a family of doubly compensated multiplicity-edited heteronuclear single quantum coherence (HSQC) pulse sequences. The key difference between our proposed sequences and the compensation of refocusing inefficiency with synchronized inversion sweeps (CRISIS)-HSQC experiments they are based on is that the conventional rectangular 180 degrees pulses on the proton channel in the latter have been replaced by the computer-optimized broadband inversion pulses (BIPs) with superior inversion performance as well as much improved tolerance to B(1) field inhomogeneity. Moreover, all adiabatic carbon 180 degrees pulses during the INEPT and reverse-INEPT periods in the CRISIS-HSQC sequences have also been replaced with the much shorter BIPs, while the adiabatic sweeps during the heteronuclear spin echo for multiplicity editing are kept in place in order to maintain the advantage of the CRISIS feature of the original sequences, namely J-independent refocusing of the one-bond (1)H--(13)C coupling constants. These modifications have also been implemented to the preservation of equivalent pathways (PEP)-HSQC experiments. We demonstrate through a detailed comparison that replacing the proton 180 degrees pulses with the BIPs provide additional sensitivity gain that can be mainly attributed to the improved tolerance to B(1) field inhomogeneity of the BIPs. The proposed sequences can be easily adapted for (19)F--(13)C correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.