[1] This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas (available at http://www.nodc.noaa.gov/OC5/indprod.html, hereinafter referred to as WOA-2004) compiled by Levitus et al., 2005. Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test bed for studying the effects of sparse, space-varying and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 m of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our results illustrate that subsampling model data at the locations of available observations increases the variability, reducing the discrepancy between models and observations.
A warming signal has penetrated into the world's oceans over the past 40 years. The signal is complex, with a vertical structure that varies widely by ocean; it cannot be explained by natural internal climate variability or solar and volcanic forcing, but is well simulated by two anthropogenically forced climate models. We conclude that it is of human origin, a conclusion robust to observational sampling and model differences. Changes in advection combine with surface forcing to give the overall warming pattern. The implications of this study suggest that society needs to seriously consider model predictions of future climate change.
Abstract. The Intergovernmental Panel on Climate Change (IPCC) has accepted the invitation from the UNFCCC to provide a special report on the impacts of global warming of 1.5 • C above pre-industrial levels and on related global greenhouse-gas emission pathways. Many current experiments in, for example, the Coupled Model Inter-comparison Project (CMIP), are not specifically designed for informing this report. Here, we document the design of the half a degree additional warming, projections, prognosis and impacts (HAPPI) experiment. HAPPI provides a framework for the generation of climate data describing how the climate, and in particular extreme weather, might differ from the present day in worlds that are 1.5 and 2.0 • C warmer than pre-industrial conditions. Output from participating climate models includes variables frequently used by a range of impact models. The key challenge is to separate the impact of an additional approximately half degree of warming from uncertainty in climate model responses and internal climatePublished by Copernicus Publications on behalf of the European Geosciences Union. Large ensembles of simulations (> 50 members) of atmosphere-only models for three time slices are proposed, each a decade in length: the first being the most recent observed 10-year period (2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015), the second two being estimates of a similar decade but under 1.5 and 2 • C conditions a century in the future. We use the representative concentration pathway 2.6 (RCP2.6) to provide the model boundary conditions for the 1.5 • C scenario, and a weighted combination of RCP2.6 and RCP4.5 for the 2 • C scenario.
[1] We examine changes in tropopause height, a variable that has hitherto been neglected in climate change detection and attribution studies. The pressure of the lapse rate tropopause, p LRT , is diagnosed from reanalyses and from integrations performed with coupled and uncoupled climate models. In the National Centers for Environmental Prediction (NCEP) reanalysis, global-mean p LRT decreases by 2.16 hPa/decade over 1979-2000, indicating an increase in the height of the tropopause. The shorter European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis has a global-mean p LRT trend of À1.13 hPa/decade over 1979-1993. Simulated p LRT trends over the past several decades are consistent with reanalysis results. Superimposed on the overall increase in tropopause height in models and reanalyses are pronounced height decreases following the eruptions of El Chichón and Pinatubo. Interpreting these p LRT results requires knowledge of both T(z), the initial atmospheric temperature profile, and ÁT(z), the change in this profile in response to external forcing. T(z) has a strong latitudinal dependence, as does ÁT(z) for forcing by well-mixed greenhouse gases and stratospheric ozone depletion. These dependencies help explain why overall tropopause height increases in reanalyses and observations are amplified toward the poles. The pronounced increases in tropopause height in the climate change integrations considered here indicate that even AGCMs with coarse vertical resolution can resolve relatively small externally forced changes in tropopause height. The simulated decadal-scale changes in p LRT are primarily thermally driven and are an integrated measure of the anthropogenically forced warming of the troposphere and cooling of the stratosphere. Our algorithm for estimating p LRT (based on a thermal definition of tropopause height) is sufficiently sensitive to resolve these large-scale changes in atmospheric thermal structure. Our results indicate that the simulated increase in tropopause height over 1979-1997 is a robust, zero-order response of the climate system to forcing by well-mixed greenhouse gases and stratospheric ozone depletion. At the global-mean level, we find agreement between the simulated decadal-scale p LRT changes and those estimated from reanalyses. While the agreement between simulated p LRT changes and those in NCEP is partly fortuitous (due to excessive stratospheric cooling in NCEP), it is also driven by real pattern similarities. Our work illustrates that changes in tropopause height may be a useful ''fingerprint'' of human effects on climate and are deserving of further attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.