Event models obtained automatically from video can be used in applications ranging from abnormal event detection to content based video retrieval. When multiple agents are involved in the events, characterizing events naturally suggests encoding interactions as relations. Learning event models from this kind of relational spatio-temporal data using relational learning techniques such as Inductive Logic Programming (ILP) hold promise, but have not been successfully applied to very large datasets which result from video data. In this paper, we present a novel framework remind (Relational Event Model INDuction) for supervised relational learning of event models from large video datasets using ILP. Efficiency is achieved through the learning from interpretations setting and using a typing system that exploits the type hierarchy of objects in a domain. The use of types also helps prevent over generalization. Furthermore, we also present a type-refining operator and prove that it is optimal. The learned models can be used for recognizing events from previously unseen videos. We also present an extension to the framework by integrating an abduction step that improves the learning performance when there is noise in the input data. The experimental results on several hours of video data from two challenging real world domains (an airport domain and a physical action verbs domain) suggest that the techniques are suitable to real world scenarios.
This paper reports on the aims, the approach, and the results of the European project RACE. The project aim was to enhance the behavior of an autonomous robot by having the robot learn from conceptualized experiences of previous performance, based on initial models of the domain and its own actions in it. This paper introduces the general system architecture; it then sketches some results in detail regarding hybrid reasoning and planning used in RACE, and instances of learning from the experiences of real robot task execution. Enhancement of robot competence is operationalized in terms of performance quality and description length of the robot instructions, and such enhancement is shown to result from the RACE system.
Attention mechanisms and non-local mean operations in general are key ingredients in many state-of-the-art deep learning techniques. In particular, the Transformer model based on multi-head self-attention has recently achieved great success in natural language processing and computer vision. However, the vanilla algorithm computing the Transformer of an image with n pixels has O(n 2 ) complexity, which is often painfully slow and sometimes prohibitively expensive for large-scale image data. In this paper, we propose a fast randomized algorithm -SCRAM -that only requires O(n log n) time to produce an image attention map. Such a dramatic acceleration is attributed to our insight that attention maps on realworld images usually exhibit (1) spatial coherence and (2) sparse structure. The central idea of SCRAM is to employ PatchMatch, a randomized correspondence algorithm, to quickly pinpoint the most compatible key (argmax) for each query first, and then exploit that knowledge to design a sparse approximation to nonlocal mean operations. Using the argmax (mode) to dynamically construct the sparse approximation distinguishes our algorithm from all of the existing sparse approximate methods and makes it very efficient. Moreover, SCRAM is a broadly applicable approximation to any non-local mean layer in contrast to some other sparse approximations that can only approximate self-attention. Our preliminary experimental results suggest that SCRAM is indeed promising for speeding up or scaling up the computation of attention maps in the Transformer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.