Background and Purpose-Intraventricular hemorrhage (IVH) is a common complication of prematurity that results in neurological sequelae, including cerebral palsy, posthemorrhagic hydrocephalus, and cognitive deficits. Despite this, there is no standardized animal model exhibiting neurological consequences of IVH in prematurely delivered animals. We asked whether induction of moderate-to-severe IVH in premature rabbit pups would produce long-term sequelae of cerebral palsy, posthemorrhagic hydrocephalus, reduced myelination, and gliosis. Methods-The premature rabbit pups, delivered by cesarean section, were treated with intraperitoneal glycerol at 2 hours postnatal age to induce IVH. The development of IVH was diagnosed by head ultrasound at 24 hours of age. Neurobehavioral, histological, and ultrastructural evaluation and diffusion tensor imaging studies were performed at 2 weeks of age. Results-Although 25% of pups with IVH (IVH pups) developed motor impairment with hypertonia and 42% developed posthemorrhagic ventriculomegaly, pups without IVH (non-IVH) were unremarkable. Immunolabeling revealed reduced myelination in the white matter of IVH pups compared with saline-and glycerol-treated non-IVH controls. Reduced myelination was confirmed by Western blot analysis. There was evidence of gliosis in IVH pups. Ultrastructural studies in IVH pups showed that myelinated and unmyelinated fibers were relatively preserved except for focal axonal injury. Diffusion tensor imaging showed reduction in fractional anisotropy and white matter volume confirming white matter injury in IVH pups. Conclusion-The
Background and Purpose-Prenatal glucocorticoids prevent germinal matrix hemorrhage in premature infants. The underlying mechanism, however, is elusive. Germinal matrix is enriched with angiogenic vessels exhibiting paucity of pericytes and glial fibrillary acidic protein-positive astrocyte end feet. Therefore, we asked whether glucocorticoid treatment would suppress angiogenesis and enhance periendothelial coverage by pericytes and glial fibrillary acidic protein-positive end feet in the germinal matrix microvasculature. Methods-We treated pregnant rabbits with intramuscular betamethasone and delivered pups prematurely by cesarean section at E29 (termϭ32 days). Endothelial turnover, vascular density, pericyte coverage, glial fibrillary acidic protein-positive end feet, cell death, and growth factors orchestrating angiogenesis, including vascular endothelial growth factor, angiopoietins, transforming growth factor-, and platelet-derived growth factor-B, were compared between betamethasone-treated and untreated pups. Similar comparisons were done between autopsy materials from premature infants exposed and unexposed to prenatal glucocorticoids. Results-Antenatal glucocorticoid treatment reduced endothelial proliferation, vascular density, and vascular endothelial growth factor expression in the germinal matrix of both rabbits and humans. The pericyte coverage was greater in glucocorticoid-treated rabbit pups and human infants than in controls, but not the glial fibrillary acidic protein-positive end feet coverage. Transforming growth factor-, but not angiopoietins and platelet-derived growth factor-B, were elevated in glucocorticoid-treated rabbit pups compared with controls. Betamethasone treatment induced apoptosis, neuronal degeneration, and gliosis in rabbit pups. However, there was no evidence of increased cell death in glucocorticoid-exposed human infants. Conclusions-Prenatal glucocorticoid suppresses vascular endothelial growth factor and elevates transforming growth factor- levels, which results in angiogenic inhibition, trimming of neovasculature, and enhanced pericyte coverage. These changes contribute to stabilizing the germinal matrix vasculature, thereby reducing its propensity to hemorrhage. Prenatal glucocorticoid exposure does not induce neural cell death in humans, unlike rabbits. (Stroke. 2010;41:1766-1773.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.