Recent advances in acquisition, storage, and transmission of data from sensors in digital format has increased the need of tools to support users effectively in retrieving, understanding, and mining the information contained in such data.Extraction of domain specific actionable information like occurrence of one of the predefined "situations" is desirable. Major difficulties in achieving this extraction are 1) Source of Data, that is, number and type of sensors deployed is highly variable even for one type of application, 2)Availability of domain specific labeled training data is critical for computation of situations.In this paper, we propose a versatile method based on formal concept analysis to overcome these difficulties in modelingsensor based situations.Our method, making use of contexts as intermediate form of sensors data, works on any number and type of sensors. It is alsoinstance-independent and eliminates need of training, when applied to various instances of similar
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.