Pulsed laser-induced autofluorescence spectroscopic studies of pathologically certified normal, premalignant, and malignant oral tissues were carried out at 325 nm excitation. The spectral analysis and classification for discrimination among normal, premalignant, and malignant conditions were performed using principal component analysis (PCA) and artificial neural network (ANN) separately on the same set of spectral data. In case of PCA, spectral residuals, Mahalanobis distance, and scores of factors were used for discrimination among normal, premalignant, and malignant cases. In ANN, parameters like mean, spectral residual, standard deviation, and total energy were used to train the network. The ANN used in this study is a classical multiplayer feed-forward type with a back-propagation algorithm for the training of the network. The specificity and sensitivity were determined in both classification schemes. In the case of PCA, they are 100 and 92.9%, respectively, whereas for ANN they are 100 and 96.5% for the data set considered.
Laser Raman spectroscopy has been used in this study to characterize mandibular bone samples from patients who had undergone radiation therapy for oral cancer. The paper discusses spectral changes resulting in osteoradionecrosis (ORN) of the mandibular bone, a serious complication that may occur after radiation therapy. Histopathological studies normally reveal the radiation damage on vascular canals and loss in bone cells, but will not reveal any structural or biochemical changes. All radiation-induced side effects are attributed to this hypovascularity and hypocellularity caused by early- and/or late-delayed effects. Our Raman studies on normal and ORN bone and on bone exposed to radiation, but not in the ORN state, show that irradiation produces immediate structural changes in the inorganic bone matrix with a slight loss in cells. ORN bone, in addition to the structural changes that had already occurred on radiation exposure, shows almost complete loss of cellular components. Since bone tissue is continuously being remodeled (dissolved and rebuilt) under normal conditions, our results suggest that the immediate structural changes in the calcium hydroxy apatite mineral part is not repaired in ORN, due to loss of the highly transient osteoblasts and osteoclasts resulting from destruction of stem cells. The spectral studies also show changes in the organic matrix, which is mostly type I collagen.
Neurodegenerative diseases might be slow but relentless, as we continue to fail in treating or delaying their progression. Given the complexity in the pathogenesis of these diseases, a broad-acting approach like photobiomodulation can prove promising. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits, working by stimulating growth and proliferation. The implications of photobiomodulation have been studied in several neurodegenerative disease models. It has been shown to improve cell survival, decrease apoptosis, alleviate oxidative stress, suppress inflammation, and rescue mitochondrial function. In in vivo models, it has reportedly preserved motor and cognitive skills. Beyond mitochondrial stimulation, the molecular mechanisms by which photobiomodulation protects against neurodegeneration have not been very well studied. This review has systematically been undertaken to study the effects of photobiomodulation at a molecular level and identify the different biochemical pathways and molecular changes in the process. The data showed the involvement of pathways like extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and protein kinase B (Akt). In addition, the expression of several genes and proteins playing different roles in the disease mechanisms was found to be influenced by PBM, such as neurotrophic factors and secretases. Studying the literature indicated that PBM can be translated to a potential therapeutic tool, acting through a spectrum of mechanisms that work together to decelerate disease progression in the organism, which is difficult to achieve through pharmacological interventions.
Three conformational isomers of 2-indanol are identified by use of resonance enhanced two-photon ionization (R2PI) and single vibronic level dispersed fluorescence spectroscopy in a supersonic jet expansion. By combining the experimental results with the predictions of the ab initio quantum chemistry calculations at the MP2/6-311++G(d,p) level of theory, the major species is identified as a conformational isomer in which the hydroxyl hydrogen is involved in an intramolecular hydrogen bonding with the π-electrons of the aromatic ring. The theoretical estimate of the hydrogen bond energy is ∼6.5 kJ/mol. A comparative investigation with indan reveals that this weak hydrogen bonding in the former significantly affects the puckering potential of the five-member side ring. The dispersed fluorescence data indicate for a much higher ring-puckering barrier in the ground state than what has been suggested recently by measuring rotational spectra of the unsubstituted indan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.