SUMMARYIn plants, geranylgeranyl diphosphate (GGPP, C20) synthesized by GGPP synthase (GGPPS) serves as precursor for vital metabolic branches including specialized metabolites. Here, we report the characterization of a GGPPS (CrGGPPS2) from the Madagascar periwinkle (Catharanthus roseus) and demonstrate its role in monoterpene (C10)‐indole alkaloids (MIA) biosynthesis. The expression of CrGGPPS2 was not induced in response to methyl jasmonate (MeJA), and was similar to the gene encoding type‐I protein geranylgeranyltransferase_β subunit (CrPGGT‐I_β), which modulates MIA formation in C. roseus cell cultures. Recombinant CrGGPPS2 exhibited a bona fide GGPPS activity by catalyzing the formation of GGPP as the sole product. Co‐localization of fluorescent protein fusions clearly showed CrGGPPS2 was targeted to plastids. Downregulation of CrGGPPS2 by virus‐induced gene silencing (VIGS) significantly decreased the expression of transcription factors and pathway genes related to MIA biosynthesis, resulting in reduced MIA. Chemical complementation of CrGGPPS2‐vigs leaves with geranylgeraniol (GGol, alcoholic form of GGPP) restored the negative effects of CrGGPPS2 silencing on MIA biosynthesis. In contrast to VIGS, transient and stable overexpression of CrGGPPS2 enhanced the MIA biosynthesis. Interestingly, VIGS and transgenic‐overexpression of CrGGPPS2 had no effect on the main GGPP‐derived metabolites, cholorophylls and carotenoids in C. roseus leaves. Moreover, silencing of CrPGGT‐I_β, similar to CrGGPPS2‐vigs, negatively affected the genes related to MIA biosynthesis resulting in reduced MIA. Overall, this study demonstrated that plastidial CrGGPPS2 plays an indirect but necessary role in MIA biosynthesis. We propose that CrGGPPS2 might be involved in providing GGPP for modifying proteins of the signaling pathway involved in MIA biosynthesis.
As sessile organisms, plants have evolved mechanisms to adapt to variable and rapidly fluctuating environmental conditions. Calcium (Ca2+) in plant cells is a versatile intracellular second messenger that is essential for stimulating short- and long-term responses to environmental stresses through changes in its concentration in the cytosol ([Ca2+]cyt). Increases in [Ca2+]cyt direct the strength and length of these stimuli. In order to terminate them, the cells must then remove the cytosolic Ca2+ against a concentration gradient, either taking it away from the cell or storing it in organelles such as the endoplasmic reticulum (ER) and/or vacuoles. Here, we review current knowledge about the biological roles of plant P-type Ca2+-ATPases as potential actors in the regulation of this cytosolic Ca2+ efflux, with a focus the IIA ER-type Ca2+-ATPases (ECAs) and the IIB autoinhibited Ca2+-ATPases (ACAs). While ECAs are analogous proteins to animal sarcoplasmic-endoplasmic reticulum Ca2+-ATPases (SERCAs), ACAs are equivalent to animal plasma membrane-type ATPases (PMCAs). We examine their expression patterns in cells exhibiting polar growth and consider their appearance during the evolution of the plant lineage. Full details of the functions and coordination of ECAs and ACAs during plant growth and development have not yet been elucidated. Our current understanding of the regulation of fluctuations in Ca2+ gradients in the cytoplasm and organelles during growth is in its infancy, but recent technological advances in Ca2+ imaging are expected to shed light on this subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.