The iron storage
protein bacterioferritin (BfrB) is central to
bacterial iron homeostasis. The mobilization of iron from BfrB, which
requires binding by a cognate ferredoxin (Bfd), is essential to the
regulation of cytosolic iron levels in P. aeruginosa. This paper describes the structure-guided development of small
molecule inhibitors of the BfrB–Bfd protein–protein
interaction. The process was initiated by screening a fragment library
and followed by obtaining the structure of a fragment hit bound to
BfrB. The structural insights were used to develop a series of 4-(benzylamino)-
and 4-((3-phenylpropyl)amino)-isoindoline-1,3-dione analogs that selectively
bind BfrB at the Bfd binding site. Challenging P. aeruginosa cells with the 4-substituted isoindoline analogs revealed a dose-dependent
growth phenotype. Further investigation determined that the analogs
elicit a pyoverdin hyperproduction phenotype that is consistent with
blockade of the BfrB–Bfd interaction and ensuing irreversible
accumulation of iron in BfrB, with concomitant depletion of iron in
the cytosol. The irreversible accumulation of iron in BfrB prompted
by the 4-substituted isoindoline analogs was confirmed by visualization
of BfrB-iron in P. aeruginosa cell lysates separated
on native PAGE gels and stained for iron with Ferene S. Challenging P. aeruginosa cultures with a combination of commercial
fluoroquinolone and our isoindoline analogs results in significantly
lower cell survival relative to treatment with either antibiotic or
analog alone. Collectively, these findings furnish proof of concept
for the usefulness of small molecule probes designed to dysregulate
bacterial iron homeostasis by targeting a protein–protein interaction
pivotal for iron storage in the bacterial cell.
An efficient route to substituted 1-aryl-1H-indazoles has been developed and optimized. The method involved the preparation of arylhydrazones from acetophenone or benzaldehyde substituted by fluorine at C2 and nitro at C5, followed by deprotonation and nucleophilic aromatic substitution (SNAr) ring closure in 45–90%. Modification of this procedure to a one-pot domino process was successful in the acetophenone series (73–96%), while the benzaldehyde series (63–73%) required a step-wise addition of reagents. A general one-pot protocol for 1-aryl-1H-indazole formation without the limiting substitution patterns required for the SNAr cyclization has also been achieved in 62–78% yields. A selection of 1-aryl-1H-indazoles was prepared in high yield by a procedure that requires only a single laboratory operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.