The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, because of close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find that an engineered decoy receptor, sACE22.v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain followed by in vitro selection, with wild-type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild-type receptor. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.
The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, due to close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find an engineered decoy receptor, sACE22.v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain followed by in vitro selection, with wild type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild type receptor. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.
Degraded lands are defined by soils that have lost primary productivity due to abiotic or biotic stresses. Among the abiotic stresses, drought, salinity, and heavy metals are the main threats in tropical areas. These stresses affect plant growth and reduce their productivity. Nitrogen-fixing plants such as actinorhizal species that are able to grow in poor and disturbed soils are widely planted for the reclamation of such degraded lands. It has been reported that association of soil microbes especially the nitrogen-fixing bacteria Frankia with these actinorhizal plants can mitigate the adverse effects of abiotic and biotic stresses. Inoculation of actinorhizal plants with Frankia significantly improves plant growth, biomass, shoot and root N content, and survival rate after transplanting in fields. However, the success of establishment of actinorhizal plantation in degraded sites depends upon the choice of effective strains of Frankia. Studies related to the beneficial role of Frankia on the establishment of actinorhizal plants in degraded soils are scarce. In this review, we describe some examples of the use of Frankia inoculation to improve actinorhizal plant performances in harsh conditions for reclamation of degraded lands.
Monoclonal antibodies targeting the SARS‐CoV‐2 spike (S) neutralize infection and are efficacious for the treatment of COVID‐19. However, SARS‐CoV‐2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS‐CoV‐2 variants and related betacoronaviruses. The high‐affinity and catalytically active decoy sACE2 2 .v2.4‐IgG1 was previously shown to be effective against SARS‐CoV‐2 variants when administered intravenously. Here, inhalation of aerosolized sACE2 2 .v2.4‐IgG1 increased survival and ameliorated lung injury in K18‐hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE2 2 .v2.4‐IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18‐hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE2 2 .v2.4‐IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS‐CoV‐2 variants.
Monoclonal antibodies targeting the SARS-CoV-2 spike (S) glycoprotein neutralize infection and are efficacious for the treatment of mild-to-moderate COVID-19. However, SARS-CoV-2 variants have emerged that partially or fully escape monoclonal antibodies in clinical use. Notably, the BA.2 sublineage of B.1.1.529/omicron escapes nearly all monoclonal antibodies currently authorized for therapeutic treatment of COVID-19. Decoy receptors, which are based on soluble forms of the host entry receptor ACE2, are an alternative strategy that broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE22.v2.4-IgG1 was previously shown to be effective in vivo against SARS-CoV-2 variants when administered intravenously. Here, the inhalation of sACE22.v2.4-IgG1 is found to increase survival and ameliorate lung injury in K18-hACE2 transgenic mice inoculated with a lethal dose of the virulent P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy supporting dual mechanisms of action: direct blocking of viral S and turnover of ACE2 substrates associated with lung injury and inflammation. Binding of sACE22.v2.4-IgG1 remained tight to S of BA.1 omicron, despite BA.1 omicron having extensive mutations, and binding exceeded that of four monoclonal antibodies approved for clinical use. BA.1 pseudovirus and authentic virus were neutralized at picomolar concentrations. Finally, tight binding was maintained against S from the BA.2 omicron sublineage, which differs from S of BA.1 by 26 mutations. Overall, the therapeutic potential of sACE22.v2.4-IgG1 is further confirmed by inhalation route and broad neutralization potency persists against increasingly divergent SARS-CoV-2 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.