Electrospinning is an effective process for synthesis of polymer fibers with diameters ranging between nanometers and micrometers by employing electrostatic force developed due to application of high voltage. The present work aims to develop an electrospinning system and optimize the process parameters for synthesis of Polyvinyl Acetate thin films used for gas and humidity sensors. Taguchi's Design of Experiment was adopted considering three main factors at three different levels for optimization of process parameters. The factors considered were flow rate (0.5, 0.6 and 0.7 ml/h), voltage (18, 19 and 20 kV) and spinneret to collector distance (8, 9, 10 cm) with fiber diameter as the response factor. The main effect plots and interaction plots of the parameters were studied to determine the most influencing parameter. Flow rate was the most significant factor followed by spinneret to collector distance. Least fiber diameter of 24.83 nm was observed at 19 kV, 0.5 ml/h flow rate and 8 cm spinneret to collector distance. SEM images revealed uniform fiber diameter at lower flow rate while bead formation increased monotonically with rise in flow rate.
AbstractThis paper deals with the study of screw configuration for dispersing nanofillers in thermoset polymers using an intermesh co-rotating twin screw extruder. The influence of kneading elements on the dispersion of nanoclay in epoxy was examined using 10 different screw configurations. Nanoclay was dispersed in epoxy at a barrel temperature of 5°C and a screw speed of 100 rpm. The combination of right hand kneading block and three/four lobed kneading blocks resulted in uniform dispersion of nanofiller. Positive staggered angle with right hand kneading elements yielded uniform dispersion of the nanofiller. Mechanical properties of epoxy nanocomposites processed with these configurations were better than those of neat epoxy. Excessive shear was associated with four lobed kneading block (4KB)/4KB configuration and hence degradation of polymers leading to shorter chains, whereas inadequate shearing in neutral kneading block (NKB)/NKB configuration led to agglomerations. These observations were evidenced by scanning electron microscopy (SEM) and X-ray diffraction (XRD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.