Online social networks have become extremely popular; numerous sites allow users to interact and share content using social links. Users of these networks often establish hundreds to even thousands of social links with other users. Recently, researchers have suggested examining the activity networka network that is based on the actual interaction between users, rather than mere friendship-to distinguish between strong and weak links. While initial studies have led to insights on how an activity network is structurally different from the social network itself, a natural and important aspect of the activity network has been disregarded: the fact that over time social links can grow stronger or weaker. In this paper, we study the evolution of activity between users in the Facebook social network to capture this notion. We find that links in the activity network tend to come and go rapidly over time, and the strength of ties exhibits a general decreasing trend of activity as the social network link ages. For example, only 30% of Facebook user pairs interact consistently from one month to the next. Interestingly, we also find that even though the links of the activity network change rapidly over time, many graph-theoretic properties of the activity network remain unchanged.
The various proposed DHT routing algorithms embody several different underlying routing geometries. These geometries include hypercubes, rings, tree-like structures, and butterfly networks. In this paper we focus on how these basic geometric approaches affect the resilience and proximity properties of DHTs. One factor that distinguishes these geometries is the degree of flexibility they provide in the selection of neighbors and routes. Flexibility is an important factor in achieving good static resilience and effective proximity neighbor and route selection. Our basic finding is that, despite our initial preference for more complex geometries, the ring geometry allows the greatest flexibility, and hence achieves the best resilience and proximity performance.
Peer-to-peer (P2P) file sharing accounts for an astonishing volume of current Internet traffic. This paper probes deeply into modern P2P file sharing systems and the forces that drive them. By doing so, we seek to increase our understanding of P2P file sharing workloads and their implications for future multimedia workloads. Our research uses a three-tiered approach. First, we analyze a 200-day trace of over 20 terabytes of Kazaa P2P traffic collected at the University of Washington. Second, we develop a model of multimedia workloads that lets us isolate, vary, and explore the impact of key system parameters. Our model, which we parameterize with statistics from our trace, lets us confirm various hypotheses about file-sharing behavior observed in the trace. Third, we explore the potential impact of localityawareness in Kazaa.Our results reveal dramatic differences between P2P file sharing and Web traffic. For example, we show how the immutability of Kazaa's multimedia objects leads clients to fetch objects at most once; in contrast, a World-Wide Web client may fetch a popular page (e.g., CNN or Google) thousands of times. Moreover, we demonstrate that: (1) this "fetch-at-most-once" behavior causes the Kazaa popularity distribution to deviate substantially from Zipf curves we see for the Web, and (2) this deviation has significant implications for the performance of multimedia file-sharing systems. Unlike the Web, whose workload is driven by document change, we demonstrate that clients' fetch-at-mostonce behavior, the creation of new objects, and the addition of new clients to the system are the primary forces that drive multimedia workloads such as Kazaa. We also show that there is substantial untapped locality in the Kazaa workload. Finally, we quantify the potential bandwidth savings that locality-aware P2P file-sharing architectures would achieve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.