Web applications suffer from software and configuration faults that lower their availability. Recovering from failure is dominated by the time interval between when these faults appear and when they are detected by site operators. We introduce a set of tools that augment the ability of operators to perceive the presence of failure: an automatic anomaly detector scours HTTP access logs to find changes in user behavior that are indicative of site failures, and a visualizer helps operators rapidly detect and diagnose problems. Visualization addresses a key question of autonomic computing of how to win operators' confidence so that new tools will be embraced. Evaluation performed using HTTP logs from Ebates.com demonstrates that these tools can enhance the detection of failure as well as shorten detection time. Our approach is application-generic and can be applied to any Web application without the need for instrumentation.
The remote sensing surveillance of maritime areas represents an essential task for both security and environmental reasons. Recently, learning strategies belonging to the field of machine learning (ML) have become a niche of interest for the community of remote sensing. Specifically, a major challenge is the automatic classification of ships from satellite imagery, which is needed for traffic surveillance systems, the protection of illegal fisheries, control systems of oil discharge, and the monitoring of sea pollution. Deep learning (DL) is a branch of ML that has emerged in the last few years as a result of advancements in digital technology and data availability. DL has shown capacity and efficacy in tackling difficult learning tasks that were previously intractable. Specifically, DL methods, such as convolutional neural networks (CNNs), have been reported to be efficient in image detection and recognition applications. In this paper, we focused on the development of an automatic ship detection (ASD) approach by using DL methods for assessing the Airbus ship dataset (composed of about 40 K satellite images). The paper explores and analyzes the distinct variations of the YOLO algorithm for the detection of ships from satellite images. A comparison of different versions of YOLO algorithms for ship detection, such as YOLOv3, YOLOv4, and YOLOv5, is presented, after training them on a personal computer with a large dataset of satellite images of the Airbus Ship Challenge and Shipsnet. The differences between the algorithms could be observed on the personal computer. We have confirmed that these algorithms can be used for effective ship detection from satellite images. The conclusion drawn from the conducted research is that the YOLOv5 object detection algorithm outperforms the other versions of the YOLO algorithm, i.e., YOLOv4 and YOLOv3 in terms accuracy of 99% for YOLOv5 compared to 98% and 97% respectively for YOLOv4 and YOLOv3.
In recent years, deep learning strategies started to outshine traditional machine learning methods in a few fields, with Computer Vision being one of the most noticeable ones. The Computer Vision is becoming more suitable nowadays at identifying patterns from images than the human visual cognitive system. It ranges from raw information recording to methods and ideas that span digital image processing, machine learning, and computer graphics. The wide utilization of Computer Vision has attracted many researchers to incorporate their ideas with different fields and disciplines. The era of smart cities has emerged to meet the recent demands of citizens using information and communication technology. This paper reviews research efforts that utilize Deep Learning Frameworks and Computer Vision Applications in support of smart city applications like smart healthcare, smart transportation, smart agriculture, etc. Furthermore, the paper identified key research challenges that emanate from the use of deep learning and computer vision in support of smart city services.
One of the most critical issues that the marine surveillance system has to address is the accuracy of its ship detection. Since it is responsible for identifying potential pirate threats, it has to be able to perform its duties efficiently. In this paper, we present a novel deep learning approach that combines the capabilities of a Graph Neural Network (GNN) and a You Only Look Once (YOLOv7) deep learning framework. The main idea of this method is to provide a better understanding of the ship’s presence in harbor areas. The three hyperparameters that are used in the development of this system are the learning rate, batch sizes, and optimization selection. The results of the experiments show that the Adam optimization achieves a 93.4% success rate when compared to the previous generation of the YOLOv7 algorithm. The High-Resolution Satellite Image Dataset (HRSID), which is a high-resolution image of a synthetic aperture radar, was used for the test. This method can be further improved by taking into account the various kinds of neural network architecture that are commonly used in deep learning.
Open procedures represent the dominant form of surgery worldwide. Artificial intelligence (AI) has the potential to optimize surgical practice and improve patient outcomes, but efforts have focused primarily on minimally invasive techniques. Our work overcomes existing data limitations for training AI models by curating, from YouTube, the largest dataset of open surgical videos to date: 1997 videos from 23 surgical procedures uploaded from 50 countries. Using this dataset, we developed a multi-task AI model capable of real-time understanding of surgical behaviors, hands, and tools—the building blocks of procedural flow and surgeon skill—across both space and time. We show that our model generalizes across diverse surgery types and environments. Illustrating this generalizability, we directly applied our YouTube-trained model to analyze open surgeries prospectively collected at an academic medical center and identified kinematic descriptors of surgical skill related to efficiency of hand motion. Our Annotated Videos of Open Surgery (AVOS) dataset and trained model will be made available for further development of surgical AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.