The antibacterial properties of zinc oxide nanoparticles were investigated using both gram-positive and gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.
b S Supporting Information ' INTRODUCTIONZnO, an IIÀVI semiconductor with noncentrosymmetric wurtzite crystal structure, a direct band gap of 3.37 eV, and a large excitation binding energy of 60 meV, has been extensively investigated because of its potential applications in piezoelectric devices, transistors, photodiodes, and photocatalysis. 1À5 The unique antibacterial function of ZnO nanostructures both in the dark and under solar irradiation has also attracted great interest. 6,7 In the field of photocatalysis, ZnO is usually believed to be an alternative photocatalyst material to TiO 2 , since they have similar band gaps and similar photocatalytic mechanisms. 4,5 In addition, it was reported in several works that ZnO exhibited better activity than TiO 2 for the photocatalytic degradation of environmental pollutants, especially for the decomposition of dyes under visible irradiation. 8À10 The structure of nanomaterial, including morphology, particle size, and two-dimensional and three-dimensional architectures, can play important roles in determining the electrical, optical, and catalytic properties. A large volume of work have been done to elucidate the structureÀproperty relationship in heterogeneous catalysis and to provide useful information for the design and building of efficient nanostructured catalysts. The morphology, particle size, crystal orientation, crystallinity, and oxygen defects are some factors that influence the photocatalytic performance and stability of ZnO photocatalysts. ZnO nanostructure with different three-dimensional architectures, such as microscale rods, tubes, plates, porous hollow microspheres, and flowerlike hierarchical micro/nanoarchitecture, were fabricated by chemical vapor deposition, thermal evaporation, and
ConspectusSupramolecular assemblies formed from spontaneous self-assembly of amphiphilic macromolecules are explored as biomimetic architectures and for applications in areas such as sensing, drug delivery, and diagnostics. Macromolecular assemblies are usually preferred, compared with their simpler small molecule counterparts, due to their low critical aggregate concentrations (CAC) and high thermodynamic stability. This Account focuses on the structural and functional aspects of assemblies formed from dendrimers, specifically facially amphiphilic dendrons that form micelle or inverse micelle type supramolecular assemblies depending on the nature of the solvent medium.The micelle type assemblies formed from facially amphiphilic dendrons sequester hydrophobic guest molecules in their interiors. The stability of these assemblies is dependent on the relative compatibility of the hydrophilic and hydrophobic functionalities with water, often referred to as hydrophilic–lipophilic balance (HLB). Disruption of the HLB, using an external stimulus, could lead to disassembly of the aggregates, which can then be utilized to cause an actuation event, such as guest molecule release. Studying these possibilities has led to (i) a robust and general strategy for stimulus-induced disassembly and molecular release and (ii) the introduction of a new approach to protein-responsive supramolecular disassembly. The latter strategy provides a particularly novel avenue for impacting biomedical applications. Most of the stimuli-sensitive supramolecular assemblies have been designed to be responsive to factors such pH, temperature, and redox conditions. The reason for this interest stems from the fact that certain disease microenvironments have aberrations in these factors. However, these variations are the secondary imbalances in biology. Imbalances in protein activity are the primary reasons for most, if not all, human pathology. There have been no robust strategies in stimulus-responsive assemblies that respond to these variations. The facially amphiphilic dendrimers provide a unique opportunity to explore this possibility.Similarly, the propensity of these molecules to form inverse micelles in apolar solvents and thus bind polar guest molecules, combined with the fact that these assemblies do not thermodynamically equilibrate in biphasic mixtures, was used to predictably simplify peptide mixtures. The structure–property relationships developed from these studies have led to a selective and highly sensitive detection of peptides in complex mixtures. Selectivity in peptide extraction was achieved using charge complementarity between the peptides and the hydrophilic components present in inverse micellar interiors. These findings will have implications in areas such as proteomics and biomarker detection.
An amphiphilic nanoassembly was designed to respond to the concurrent presence of a protein and an enzyme. We present herein a system, where in the presence of these two stimuli causes a supramolecular disassembly and molecular release. This molecular release arises in the form a fluorescence response that has been shown to be specific. We also show that this system can be modified to respond only if light stimulus is also present in addition to the protein and the enzyme. Demonstration of such supramolecular disassembly principles could have wide implications in a variety of biological applications.
Stimuli sensitive, facially amphiphilic dendrimers have been synthesized and their enzyme-responsive nature has been determined with dual fluorescence responses of both covalently conjugated and non-covalently bound reporter units. These dual responses are correlated to ascertain the effect of enzymatic action on micellar aggregates and the consequential guest release. The release of the guest molecule is conveniently tuned by stabilizing the micellar aggregates through photochemical crosslinking of hydrophobic coumarin units. This photo-crosslinking is also utilized as a tool to investigate the mode of enzyme-substrate interaction in the context of aggregate-monomer equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.