Background: Recently, much attention has been given to e-learning in higher education as it provides better access to learning resources online, utilising technologyregardless of learners' geographical locations and timescaleto enhance learning. It has now become part of the mainstream in education in the health sciences, including medical, dental, public health, nursing, and other allied health professionals. Despite growing evidence claiming that e-learning is as effective as traditional means of learning, there is very limited evidence available about what works, and when and how e-learning enhances teaching and learning. This systematic review aimed to identify and synthesise the factorsenablers and barriersaffecting e-learning in health sciences education (el-HSE) that have been reported in the medical literature. Methods: A systemic review of articles published on e-learning in health sciences education (el-HSE) was performed in MEDLINE, EMBASE, Allied & Complementary Medicine, DH-DATA, PsycINFO, CINAHL, and Global Health, from 1980 through 2019, using 'Textword' and 'Thesaurus' search terms. All original articles fulfilling the following criteria were included: (1) e-learning was implemented in health sciences education, and (2) the investigation of the factorsenablers and barriersabout el-HSE related to learning performance or outcomes. Following the PRISMA guidelines, both relevant published and unpublished papers were searched. Data were extracted and quality appraised using QualSyst tools, and synthesised performing thematic analysis. Results: Out of 985 records identified, a total of 162 citations were screened, of which 57 were found to be of relevance to this study. The primary evidence base comprises 24 papers, with two broad categories identified, enablers and barriers, under eight separate themes: facilitate learning; learning in practice; systematic approach to learning; integration of e-learning into curricula; poor motivation and expectation; resource-intensive; not suitable for all disciplines or contents, and lack of IT skills. Conclusions: This study has identified the factors which impact on e-learning: interaction and collaboration between learners and facilitators; considering learners' motivation and expectations; utilising user-friendly technology; and putting learners at the centre of pedagogy. There is significant scope for better understanding of the issues related to enablers and facilitators associated with e-learning, and developing appropriate policies and initiatives to establish when, how and where they fit best, creating a broader framework for making e-learning effective.
Learning to generate natural scenes has always been a challenging task in computer vision. It is even more painstaking when the generation is conditioned on images with drastically different views. This is mainly because understanding, corresponding, and transforming appearance and semantic information across the views is not trivial. In this paper, we attempt to solve the novel problem of cross-view image synthesis, aerial to street-view and vice versa, using conditional generative adversarial networks (cGAN). Two new architectures called Crossview Fork (X-Fork) and Crossview Sequential (X-Seq) are proposed to generate scenes with resolutions of 64×64 and 256×256 pixels. X-Fork architecture has a single discriminator and a single generator. The generator hallucinates both the image and its semantic segmentation in the target view. X-Seq architecture utilizes two cGANs. The first one generates the target image which is subsequently fed to the second cGAN for generating its corresponding semantic segmentation map. The feedback from the second cGAN helps the first cGAN generate sharper images. Both of our proposed architectures learn to generate natural images as well as their semantic segmentation maps. The proposed methods show that they are able to capture and maintain the true semantics of objects in source and target views better than the traditional image-to-image translation method which considers only the visual appearance of the scene. Extensive qualitative and quantitative evaluations support the effectiveness of our frameworks, compared to two state of the art methods, for natural scene generation across drastically different views.
There has been growing interest in the use of qualitative methods in health research amongst health and social care professionals. Good qualitative cross-cultural research analysis is not an easy task as it involves knowledge of different approaches, techniques and command of the appropriate languages. This article aims to discuss and explore some of the key processes and concepts involved in conducting translation and transliteration of qualitative research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.