In this paper, a deep learning-based multi-stage polynomial driven glaucoma classification-net (PDGC-Net) has been proposed for glaucoma identification through retinal images. The proposed approach begins with retinal image pu[1]rification by noise estimation and reduction. Noise has been estimated using a polynomial coefficient-based approach. Images are classified using PDGC-Net, whose polynomial indeterminate representative blocks are designed using new convolutional neural networks (CNN) architectures. The performance of PDGC[1]Net has been observed on the ACRIMA, ORIGA, and retinal image database for optic nerve evaluation (RIM-ONE) datasets. The experimentation is carried out on noisy and denoised images separately, and PDGC-Net has achieved 96% to 98% and 98% to 100% accuracy ranges, respectively. The model’s elasticity is tested with various stages of PDGC-Net. The quantitative PDGC-Net perfor[1]mance analysis is done with state-of-the-art CNN models. The proposed model’s performance has been proven and could be an effective aid to ophthalmologists for glaucoma screening (GS).
In this paper, a deep learning-based multi-stage polynomial driven glaucoma classification-net (PDGC-Net) has been proposed for glaucoma identification through retinal images. The proposed approach begins with retinal image pu[1]rification by noise estimation and reduction. Noise has been estimated using a polynomial coefficient-based approach. Images are classified using PDGC-Net, whose polynomial indeterminate representative blocks are designed using new convolutional neural networks (CNN) architectures. The performance of PDGC[1]Net has been observed on the ACRIMA, ORIGA, and retinal image database for optic nerve evaluation (RIM-ONE) datasets. The experimentation is carried out on noisy and denoised images separately, and PDGC-Net has achieved 96% to 98% and 98% to 100% accuracy ranges, respectively. The model’s elasticity is tested with various stages of PDGC-Net. The quantitative PDGC-Net perfor[1]mance analysis is done with state-of-the-art CNN models. The proposed model’s performance has been proven and could be an effective aid to ophthalmologists for glaucoma screening (GS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.