Data quality is key in the success of a citizen science project. Valid datasets serve as evidence for scientific research. Numerous projects have highlighted the ways in which participatory data collection can cause data quality issues due to human day-to-day practices and biases. Also, these projects have used and reported a myriad of techniques to improve data quality in different contexts. Yet, there is a lack of systematic analyses of these experiences to guide the design and of digital citizen science projects. We mapped 35 data quality issues of 16 digital citizen science projects and proposed a taxonomy with 64 mechanisms to address data quality issues before, during and after the data collection in digital citizen science projects. This taxonomy is built upon the analysis of literature reports (N=144), two urban experiments (participants=280), and expert interviews (N=11). Thus, we contribute to advance the development of systematic methods to improve the data quality in digital citizen science projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.