A combination of Molecular Dynamics (MD) simulations and docking calculations was employed to model and predict polymer-drug interactions in self-assembled nanoparticles consisting of ABA-type triblock copolymers, where A-blocks are poly(ethylene glycol) units and B-blocks are low molecular weight tyrosine-derived polyarylates. This new computational approach was tested on three representative model compounds: nutraceutical curcumin, anti-cancer drug paclitaxel and pre-hormone vitamin D3. Based on this methodology, the calculated binding energies of polymer-drug complexes can be correlated with maximum drug loading determined experimentally. Furthermore, the modeling results provide an enhanced understanding of polymer-drug interactions, revealing subtle structural features that can significantly affect the effectiveness of drug loading (as demonstrated for a fourth tested compound, anticancer drug camptothecin). The present study suggests that computational calculations of polymer-drug pairs hold the potential of becoming a powerful prescreening tool in the process of discovery, development and optimization of new drug delivery systems, reducing both the time and the cost of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.