Leptospirosis remains a significant human health issue due to its systemic complications. Therefore, biomarkers that are more effective are urgently needed for the early diagnosis of leptospirosis. MicroRNAs (miRNAs) are evolutionarily conserved regulatory RNAs that have shown the potential to be used as biomarkers for diagnosis, prognosis, and therapy of infectious diseases. In this study, we performed an unbiased screen using the miRNome miRNA array to identify circulating miRNAs with the potential to serve as authentic biomarkers for early diagnosis of leptospirosis. Because leptospiral lipopolysaccharide (LPS) is the predominant leptospiral antigen and plays a vital role in immunological and biological activities, we used LPS treated and untreated in vitro (THP1 cells) and in vivo (BALB/c mice) surrogate models to identify the LPS-specific miRNAs. Differential expression analysis revealed 18 miRNAs to be associated strongly with LPS stimulation in THP1 cells. Of these, three (miR-let-7b-5p, miR-144-3p, and miR-21-5p) were observed to be present at increased levels in vivo. The identified miRNAs were validated for their biomarker potential using serum samples from leptospirosis-negative patients and patients with confirmed cases of leptospirosis. Identified miRNAs were able to discriminate the acute leptospiral infection from other febrile diseases with a test sensitivity and specificity of 93.2% and 88.19%, respectively. Gene functional enrichment and protein-protein interaction (PPI) network analysis revealed that the identified miRNAs play important roles in disease signal transduction, signaling by interleukins, the stress-activated protein kinase signaling cascade, the mitogen-activated protein kinase (MAPK) signaling pathway, and the cellular response to a transforming growth factor β (TGF-β) stimulus with a notable interconnection between these biological processes. IMPORTANCE Here, we used miRNAs that are differentially regulated by the LPS/TLR2 immune axis to devise a miRNA-based diagnosis for leptospirosis. The study established the role of the circulating stable miRNAs (miR-21-5p, miR-144-3p, and miR-let-7b-5p) as an early diagnostic marker for leptospirosis. These miRNAs can be used to diagnose acute leptospirosis and also to differentiate leptospiral infection from other bacterial and spirochetal infections, as proved by the use of human clinical samples. Thus, our findings indicate that miRNAs can play a crucial role in the diagnosis of infectious diseases, like leptospirosis, that are generally misdiagnosed.
The search for valuable early diagnostic markers for leptospirosis is ongoing. The aim of the present study was to evaluate the diagnostic value of macrophage migration inhibitory factor (MIF) for leptospirosis. MIF is an immunoregulatory cytokine secreted by a variety of cell types involved in immune response and the pathogenesis of various diseases. It was previously described as a severity predictor of diseases. Samples of 142 leptospirosis cases, 101 other febrile cases, and 57 healthy controls were studied. The prevalence of leptospirosis was 47.3%. Autumnalis, Australis, and Canicola were the highly prevalent leptospiral serovars with a microscopic agglutination test (MAT) titer in the range 1:80–1:2,560. Enzyme-linked immunosorbent assay (ELISA) of MIF was carried out to measure the serum MIF levels. We found that the serum MIF levels [median, (interquartile range)] were significantly (p < 0.001) elevated in different clinical forms of leptospirosis, such as febrile illness [7.5 ng/ml (5.32–8.97)], pulmonary hemorrhage [13.2 ng/ml (11.77–16.72)], Weil’s syndrome [8.8 ng/ml (7.25–9.95)], and renal failure [8.6 ng/ml (7.18–10.5)], than in healthy controls [0.65n g/ml (0.5–1.1)]. Serum MIF had sensitivity, specificity, positive predictive value, and negative predictive value of 100%, >90%, >90%, and 100%, respectively. Receiver operating characteristic (ROC) analysis revealed that the serum MIF levels between leptospirosis cases and control subjects had an area under the curve (AUC) value of >0.9 (p < 0.0001). In leptospirosis patients, elevation of serum MIF was significantly (p < 0.001) higher in severe cases with organ dysfunction [10 ng/ml (7.8–14.5)] than that in mild febrile cases [7.5 ng/ml (5.32–8.97)], with the difference of 2.5 indicating that serum MIF acts as a predictor of leptospirosis severity. Pearson’s correlation test demonstrated that the serum MIF level was strongly correlated (r = 0.75, p < 0.0001) with disease progression. The median lethal dose (LD50) of leptospiral lipopolysaccharide (LPS) in BALB/c mice was determined to be 20 mg/kg, which gave rise to endotoxemia. Leptospiral LPS triggered the upregulation of MIF expression at 24 h post-infection, which reached the peak level at 24 h post-treatment in THP-1 cells and showed elevated MIF expressions in different tissues of BALB/c mice at the early stage of infection. Taken together, MIF is an early-phase cytokine that could serve as a rapid diagnostic marker for leptospirosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.