Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper ( Calidris mauri ), European starling ( Sturnus vulgaris ) and American robin ( Turdus migratorius ) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named ‘double branch’). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag.
Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R 2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.
Synopsis The mechanisms associated with the ability of owls to fly silently have been the subject of scientific interest for many decades and may be relevant to bio-inspired design to reduce noise of flapping and non-flapping flying devices. Here, we characterize the near wake dynamics and the associated flow structures produced during flight of the Australian boobook owl (Ninox boobook). Three individual owls were flown at 8 ms−1 in a climatic avian wind tunnel. The velocity field in the wake was sampled at 500 Hz using long-duration high-speed particle image velocimetry (PIV) while the wing kinematics were imaged simultaneously using high speed video. The time series of velocity maps that were acquired over several consecutive wingbeat cycles enabled us to characterize the wake patterns and to associate them with the phases of the wingbeat cycle. We found that the owl wake was dramatically different from other birds measured under the same flow conditions (i.e., western sandpiper, Calidris mauri and European starling, Sturnus vulgaris). The near wake of the owl did not exhibit any apparent shedding of organized vortices. Instead, a more chaotic wake pattern was observed, in which the characteristic scales of vorticity (associated with turbulence) are substantially smaller in comparison to other birds. Estimating the pressure field developed in the wake shows that owls reduce the pressure Hessian (i.e., the pressure distribution) to approximately zero. We hypothesize that owls manipulate the near wake to suppress the aeroacoustic signal by controlling the size of vortices generated in the wake, which are associated with noise reduction through suppression of the pressure field. Understanding how specialized feather structures, wing morphology, or flight kinematics of owls contribute to this effect remains a challenge for additional study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.