Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Patients who undergo APR of rectum are prone to impaired healing of the perineal wound if radiotherapy is used to treat malignancy prior to surgery and wound closure is delayed. In addition, the wound may not heal in patients with distant metastases, excessive alcohol consumption, present and past smokers and those who suffer adverse effects of preoperative chemoradiation and require blood transfusion.
To identify a gene(s) susceptible to nasopharyngeal carcinoma (NPC), we carried out a genome-wide association study (GWAS) through genotyping of more than 500,000 tag single-nucleotide polymorphisms (SNPs), using an initial sample set of 111 unrelated NPC patients and 260 controls of a Malaysian Chinese population. We further evaluated the top 200 SNPs showing the smallest P-values, using a replication sample set that consisted of 168 cases and 252 controls. The combined analysis of the two sets of samples found an SNP in intron 3 of the ITGA9 (integrin-alpha 9) gene, rs2212020, to be strongly associated with NPC (P=8.27 x 10(-7), odds ratio (OR)=2.24, 95% confidence intervals (CI)=1.59-3.15). The gene is located at 3p21 which is commonly deleted in NPC cells. We subsequently genotyped additional 19 tag SNPs within a 40-kb linkage disequilibrium (LD) block surrounding this landmark SNP. Among them, SNP rs189897 showed the strongest association with a P-value of 6.85 x 10(-8) (OR=3.18, 95% CI=1.94-5.21), suggesting that a genetic variation(s) in ITGA9 may influence susceptibility to NPC in the Malaysian Chinese population.
Nasopharyngeal carcinoma (NPC) arises from the mucosal epithelium of the nasopharynx and is constantly associated with Epstein–Barr virus type 1 (EBV‐1) infection. We carried out a genome‐wide association study (GWAS) of 575,247 autosomal SNPs in 184 NPC patients and 236 healthy controls of Malaysian Chinese ethnicity. Potential association signals were replicated in a separate cohort of 260 NPC patients and 245 healthy controls. We confirmed the association of HLA‐A to NPC with the strongest signal detected in rs3869062 (p = 1.73 × 10−9). HLA‐A fine mapping revealed associations in the amino acid variants as well as its corresponding SNPs in the antigen peptide binding groove (pHLA‐A‐aa‐site‐99 = 3.79 × 10−8, prs1136697 = 3.79 × 10−8) and T‐cell receptor binding site (pHLA‐A‐aa‐site‐145 = 1.41 × 10−4, prs1059520 = 1.41 × 10−4) of the HLA‐A. We also detected strong association signals in the 5′‐UTR region with predicted active promoter states (prs41545520 = 7.91 × 10−8). SNP rs41545520 is a potential binding site for repressor ATF3, with increased binding affinity for rs41545520‐G correlated with reduced HLA‐A expression. Multivariate logistic regression diminished the effects of HLA‐A amino acid variants and SNPs, indicating a correlation with the effects of HLA‐A*11:01, and to a lesser extent HLA‐A*02:07. We report the strong genetic influence of HLA‐A on NPC susceptibility in the Malaysian Chinese.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.