Leptosphaeria maculans, the causal agent of stem canker of oilseed rape, develops gene-for-gene interactions with its hosts. To date, eight L. maculans avirulence (Avr) genes, AvrLm1 to AvrLm8, have been genetically characterized. An additional Avr gene, AvrLm9, that interacts with the resistance gene Rlm9, was genetically characterized here following in vitro crosses of the pathogen. A worldwide collection of 63 isolates, including the International Blackleg of Crucifers Network collection, was genotyped at these nine Avr loci. In a first step, isolates were classified into pathogenicity groups (PGs) using two published differential sets. This analysis revealed geographical disparities as regards the proportion of each PG. Genotyping of isolates at all Avr loci confirmed the disparities between continents, in terms of Avr allele frequencies, particularly for AvrLm2, AvrLm3, AvrLm7, AvrLm8, and AvrLm9, or in terms of race structure, diversity, and complexity. Twenty-six distinct races were identified in the collection. A larger number of races (n = 18) was found in Australia than in Europe (n = 8). Mean number of virulence alleles per isolate was also higher in Australia (5.11 virulence alleles) than in Europe (4.33) and Canada (3.46). Due to the diversity of populations of L. maculans evidenced here at the race level, a new, open terminology is proposed for L. maculans race designation, indicating all Avr loci for which the isolate is avirulent.
Aims: Trichoderma harzianum strains T22 and T39 are two micro‐organisms used as active agents in a variety of commercial biopesticides and biofertilizers and widely applied amongst field and greenhouse crops. The production, isolation, biological and chemical characterization of the main secondary metabolites produced by these strains are investigated.
Methods and Results: Of the three major compounds produced by strain T22, one is a new azaphilone that shows marked in vitro inhibition of Rhizoctonia solani, Pythium ultimum and Gaeumannomyces graminis var. tritici. In turn, filtrates from strain T39 were demonstrated to contain two compounds previously isolated from other T. harzianum strains and a new butenolide. The production of the isolated metabolites was also monitored by liquid chromatography/mass spectrometry during in vitro interaction with R. solani.
Conclusions: This paper reports the isolation and characterization of the main secondary metabolites obtained from culture filtrates of two T. harzianum strains and their production during antagonistic interaction with the pathogen R. solani.
Significance and Impact of the Study: This is the first work on secondary metabolites produced by the commercially applied strains T22 and T39. Our results provide a better understanding of the metabolism of these fungi, which are both widely used as biopesticides and/or biofertilizers in biocontrol.
Summary• The dependence of seeds of terrestrial orchids on specific fungi for germination provides a means of locating these fungi in the wild and to investigate the role of appropriate fungi in the germination of orchid seed and development of seedlings under natural field conditions.• Seed baits, comprising orchid ( Caladenia arenicola ) seed enclosed in fine nylon mesh, were placed at sample points along four transects through two orchid populations in bushland in Western Australia. Seed germination was scored and compared with adult orchid plant distribution and soil factors.• A small fraction of available seed (< 1%) germinated to a stage of tuber formation where survival over the subsequent dry season would have been possible. Germination increased in the vicinity of adult C. arenicola plants, but other factors, such as soil potassium levels and presence of leaf litter, were also correlated with seed germination.• The measurement of the spatial variability in germination events within an orchid habitat demonstrated the availability of new recruitment sites. This information is required to assess the natural recruitment capacity and the potential for orchid reintroduction in natural habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.