Cowpea mosaic virus was derivatized with poly(ethylene glycol) to give well-controlled loadings of polymer on the outer surface of the coat protein assembly. The resulting conjugates displayed altered densities and immunogenicities, consistent with the known chemical and biological properties of PEG. These studies make CPMV potentially useful as a tailored vehicle for drug delivery.
The Cu(I)-catalyzed ATRP and azide-alkyne cycloaddition reactions together provide a versatile method for the synthesis of end-functionalized glycopolymers and their attachment to a suitably modified viral protein scaffold.
Glioblastoma (GBM) is one of the most pernicious forms of cancer and currently chances of survival from this malady are extremely low. We have used the noninvasive strategy of intranasal (IN) delivery of a glioblastoma-directed adduct of curcumin (CC), CC-CD68Ab, into the brain of mouse GBM GL261-implanted mice to study the effect of CC on tumor remission and on the phenotype of the tumor-associated microglial cells (TAMs). The treatment caused tumor remission in 50% of GL261-implanted GBM mice. A similar rescue rate was also achieved through intraperitoneal infusion of a lipid-encapsulated formulation of CC, Curcumin Phytosome, into the GL261-implanted GBM mice. Most strikingly, both forms of CC elicited a dramatic change in the tumor-associated Iba1+ TAMs, suppressing the tumor-promoting Arginase1 , iNOS M2-type TAM population while inducing the Arginase1 , iNOS M1-type tumoricidal microglia. Concomitantly, we observed a marked induction and activation of microglial NF-kB and STAT1, which are known to function in coordination to cause induction of iNOS. Therefore, our novel findings indicate that appropriately delivered CC can directly kill GBM cells and also repolarize the TAMs to the tumoricidal M1 state.
Curcumin, the primary active ingredient in the spice turmeric, was converted to reactive monofunctional derivatives (carboxylic acid/azide/alkyne). The derivatives were employed to produce a 3 + 2 azide-alkyne "clicked" curcumin dimer and a poly(amidoamine) (PAMAM) dendrimer-curcumin conjugate. The monofunctional curcumin derivatives retain biological activity and are efficient for labeling and dissolving amyloid fibrils. The curcumin dimer selectively destroys human neurotumor cells. The synthetic methodology developed affords a general strategy for attaching curcumin to various macromolecular scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.