Sheath blight, caused by the pathogenic fungus Rhizoctonia solani Kühn, is one of the most devastating diseases in rice. Breeders have always faced challenges in acquiring reliable and absolute resistance to this disease in existing rice germplasm. In this context, 40 rice germplasm including eight wild, four landraces, twenty- six cultivated and two advanced breeding lines were screened utilizing the colonized bits of typha. Except Tetep and ARC10531 which expressed moderate level of resistance to the disease, none could be found to be authentically resistant. In order to map the quantitative trait loci (QTLs) governing the sheath blight resistance, two mapping populations (F2 and BC1F2) were developed from the cross BPT-5204/ARC10531. Utilizing composite interval mapping analysis, 9 QTLs mapped to five different chromosomes were identified with phenotypic variance ranging from 8.40 to 21.76%. Two SSR markers namely RM336 and RM205 were found to be closely associated with the major QTLs qshb7.3 and qshb9.2 respectively and were attested as well in BC1F2 population by bulk segregant analysis approach. A hypothetical β 1–3 glucanase with other 31 candidate genes were identified in silico utilizing rice database RAP-DB within the identified QTL region qshb9.2. A detailed insight into these candidate genes will facilitate at molecular level the intricate nature of sheath blight, a step forward towards functional genomics.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-015-0954-2) contains supplementary material, which is available to authorized users.
Sheath blight disease of rice caused by Rhizoctonia solani is one of the most dreaded plant diseases faced by the rice farmers all over the world. None of the commercially cultivated rice varieties have sufficient level of field resistance, and the disease is presently being managed by chemical pesticides. In this study, 40 isolates of rice sheath blight pathogen, collected from diverse rice ecosystems from 12 different states of India, were characterized for their morphological, pathological and genetic variation. The isolates showed wide morphological variation in terms of size of sclerotia and abundance of sclerotia production. The virulence of each pathogen isolate was studied on four rice varieties, that is TN1, IR 64, Tetep and Swarnadhan in glasshouse, and observations were taken by measuring the relative lesion height. The relative lesion heights produced by these isolates on four different rice varieties varied widely. Genetic variation of the isolates was analysed using ISSR markers. The primers based on AG, GA, AC and CA repeats were informative and revealed polymorphism among the isolates. The polymorphism information content (PIC) of the primers ranged from 0.80 to 0.96, while the resolving power (Rp) ranged from 3.7 to 15.35. Largely, grouping of the isolates happened based on their geographical origin. One isolate from Titabar, Assam, and another from Adialabad, Telangana, were quite distinct from rest of the isolates.
Twenty popular rice hybrids were used to screen for rice tungro virus (RTV) disease reaction. Virulent green leafhoppers (GLH) were used as vector to introduce RTV to the rice hybrids. Virus symptoms scores were recorded at 14, 21, 34, 41 and 59 days postinoculation (DPI), which suggested that virus symptoms are greatly influenced by growth stage of plants. To confirm the presence of virus, polymerase chain reaction (PCR)-based detection of Rice tungro bacilliform virus (RTBV) was carried out at 7, 14, 21 and 59 DPI using virus genome-specific primers. Virus presence was observed in all the rice hybrids and check varieties, particularly at later stages of infection. This study shows that phenotyping for tungro virus resistance in rice hybrids at 21 DPI gives most reliable results based on both virus symptoms and presence of virus. Further, to assess the relative difference in population of RTBV, quantitative PCR was performed in all the genotypes at 21 DPI. Yield data were also recorded from control and virus-infected plants to estimate yield loss percentage due to tungro disease. This study is important to understand the response of rice hybrids to tungro virus disease. Results obtained in this study emphasize that molecular detection of virus is very important to screen the rice plants accurately for tungro disease reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.