BackgroundNeuronal polarization is an essential step of morphogenesis and connectivity in the developing brain. The serine/threonine kinase LKB1 is a key regulator of cell polarity, metabolism, tumorigenesis, and is required for axon formation. It is allosterically regulated by two related and evolutionarily conserved pseudokinases, STe20-Related ADapters (STRADs) α and β. The roles of STRADα and STRADβ in the developing nervous system are not fully defined, nor is it known whether they serve distinct functions.ResultsWe find that STRADα is highly spliced and appears to be the primal STRAD paralog. We report that each STRAD is sufficient for axogenesis and promoting cell survival in the developing cortex. We also reveal a reciprocal protein-stabilizing relationship in vivo between LKB1 and STRADα, whereby STRADα specifically maintains LKB1 protein levels via cytoplasmic compartmentalization.ConclusionsWe demonstrate a novel role for STRADβ in axogenesis and also show for the first time in vivo that STRADα, but not STRADβ, is responsible for LKB1 protein stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.