The purpose of the offering exposition is to characterize gradient Yamabe, gradient Einstein and gradient [Formula: see text]-quasi Einstein solitons within the framework of 3-dimensional para-Kenmotsu manifolds. Finally, we consider an example to prove the result obtained in previous section.
In this article, we investigate perfect fluid spacetimes equipped with concircular vector field. At first, in a perfect fluid spacetime admitting concircular vector field, we prove that the velocity vector field annihilates the conformal curvature tensor. In addition, in dimension 4, we show that a perfect fluid spacetime is a generalized Robertson–Walker spacetime with Einstein fibre. It is proved that if a perfect fluid spacetime furnished with concircular vector field admits a second order symmetric parallel tensor P, then either the equation of state of the perfect fluid spacetime is characterized by $$p=\frac{3-n}{n-1} \sigma $$
p
=
3
-
n
n
-
1
σ
, or the tensor P is a constant multiple of the metric tensor. Finally, The perfect fluid spacetimes with concircular vector field whose Lorentzian metrics are Ricci soliton, gradient Ricci soliton, gradient Yamabe solitons, and gradient m -quasi Einstein solitons, are characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.