Crop residues, the byproduct of crop production, are valuable natural resources that can be managed to maximize different input use efficiencies. Crop residue management is a well-known and widely accepted practice, and is a key component of conservation agriculture. The rapid shift from conventional agriculture to input-intensive modern agricultural practices often leads to an increase in the production of crop residues. Growing more food for an ever-increasing population brings the chance of fast residue generation. Ecosystem services from crop residues improve soil health status and supplement necessary elements in plants. However, this is just one side of the shield. Indecorous crop residue management, including in-situ residue burning, often causes serious environmental hazards. This happens to be one of the most serious environmental hazard issues witnessed by the agricultural sector. Moreover, improper management of these residues often restrains them from imparting their beneficial effects. In this paper, we have reviewed all recent findings to understand and summarize the different aspects of crop residue management, like the impact of the residues on crop and soil health, natural resource recycling, and strategies related to residue retention in farming systems, which are linked to the environment and ecology. This comprehensive review paper may be helpful for different stakeholders to formulate suitable residue management techniques that will fit well under existing farming system practices without compromising the systems’ productivity and environmental sustainability.
The shock of Coronavirus Disease 2019 (COVID-19) has disrupted food systems worldwide. Such disruption, affecting multiple systems interfaces in smallholder agriculture, is unprecedented and needs to be understood from multi-stakeholder perspectives. The multiple loops of causality in the pathways of impact renders the system outcomes unpredictable. Understanding the nature of such unpredictable pathways is critical to identify present and future systems intervention strategies. Our study aims to explore the multiple pathways of present and future impact created by the pandemic and “Amphan” cyclonic storm on smallholder agricultural systems. Also, we anticipate the behaviour of the systems elements under different realistic scenarios of intervention. We explored the severity and multi-faceted impacts of the pandemic on vulnerable smallholder agricultural production systems through in-depth interactions with key players at the micro-level. It provided contextual information, and revealed critical insights to understand the cascading effect of the pandemic and the cyclone on farm households. We employed thematic analysis of in-depth interviews with multiple stakeholders in Sundarbans areas in eastern India, to identify the present and future systems outcomes caused by the pandemic, and later compounded by “Amphan”. The immediate adaptation strategies of the farmers were engaging family labors, exchanging labors with neighbouring farmers, borrowing money from relatives, accessing free food rations, replacing dead livestock, early harvesting, and reclamation of waterbodies. The thematic analysis identified several systems elements, such as harvesting, marketing, labor accessibility, among others, through which the impacts of the pandemic were expressed. Drawing on these outputs, we employed Mental Modeler , a Fuzzy-Logic Cognitive Mapping tool, to develop multi-stakeholder mental models for the smallholder agricultural systems of the region. Analysis of the mental models indicated the centrality of “Kharif” (monsoon) rice production, current farm income, and investment for the next crop cycle to determine the pathways and degree of the dual impact on farm households. Current household expenditure, livestock, and soil fertility were other central elements in the shared mental model. Scenario analysis with multiple stakeholders suggested enhanced market access and current household income, sustained investment in farming, rapid improvement in affected soil, irrigation water and livestock as the most effective strategies to enhance the resilience of farm families during and after the pandemic. This study may help in formulating short and long-term intervention strategies in the post-pandemic communities, and the methodological approach can be used elsewhere to understand perturbed socioecological systems to formulate anticipatory intervention strategies based on collective wisdom of stakeholders.
In the present two-year study, an attempt was made to estimate the grain yield, grain nutrient uptake, and oil quality of three commonly grown maize ( Zea mays L.) hybrids fertilized with varied levels of nitrogen (N), phosphorus (P) and potassium (K). Results obtained from both the experimental years indicated that application of 125% of recommended dose of fertilizer (RDF) recorded maximum grain yield (10.37 t ha -1 ; 124% higher than control). When compared with 100% RDF, grain yield reduction with nutrient omission was 44% for N omission, 17% for P omission, and 27% for K omission. Nitrogen uptake was increased with increasing NPK levels up to 150% RDF that was statistically at par ( p ≥ 0.01) with 125% RDF. Increasing trend in P and K uptake was observed with successive increase in NPK levels up to 125% RDF, above which it declined. The protein content was significantly higher in grains of var. P 3396 with 125% RDF. Nutrient management has significant ( p ≤ 0.01) role in the grain oil content. Saturated fatty acids (palmitic, stearic and arachidic acid) content decreased, and unsaturated fatty acid (oleic, linoleic and linolenic acid) increased with increasing NPK levels. The average oleic acid desaturation and linoleic acid desaturation ratios were increased with increasing NPK levels up to 100 and 125% RDF, respectively. However, average monounsaturated fatty acids (MUFA): poly-unsaturated fatty acids (PUFA), saturated: unsaturated as well as linoleic: linolenic acid ratios were increased on receiving 75% RDF, and beyond that it showed decreasing trend. The omission of K had the highest inhibitory effect on corn oil quality followed by N and P omission.
SUMMARYThe area under hybrid maize cultivation is increasing rapidly across South Asia. However, information regarding the proper nutrient management for modern stay-green maize hybrids in India is not adequate resulting in low productivity. Existing nutrient management practices are not able to capture the momentum change in the scenario of soil nutrient supply capacity and plant nutrient demand for achieving higher yield target. The present study aims at establishing the site-specific nutrient management (SSNM) package for an inceptisol (West Bengal, India). Soil indigenous nutrient supply capacity and nutrient use efficiency was also evaluated by using the nutrient omission plot technique. The experiment was laid out in strip-plot design, assigning three maize hybrids (P 3522, P 3396 and Rajkumar) in the vertical strip and nine fertilizer treatments [50% RDF/Recommended dose of fertilizer, 75% RDF, 100% RDF (200-60-60 kg N-P2O5-K2O ha−1), 125% RDF, 150% RDF, 100% PK, 100% NK, 100% NP and control (zero-NPK)] in the horizontal strip, with three replications. Results of the experiment revealed that the differences among cultivars were generally non-significant. The maize hybrids showed greater yield response to fertilization with N (4.14 Mg ha−1) during winter, followed by K (2.54 Mg ha−1) and P (1.58 Mg ha−1). Indigenous nutrient supply was estimated 107.2, 37.6 and 107.7 kg ha−1 for N, P and K, respectively. Both average agronomic efficiency (AE) and recovery efficiency (RE) were increased with 50% RDF and it decreased with further increase in NPK levels up to 150% RDF. The average internal efficiency (IE) was higher with 50% RDF closely followed by the treatment with absence of N. As grain yields and gross return over fertilizer (GRF) under 75 to 150% NPK treatments were similar, nutrient doses of 150 kg N, 45 kg P2O5 and 45 kg K2O ha−1 were recommended as optimum for maize hybrids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.