In recent times, controlling the performance of fluid film bearings smartly has become an important area for the fluid film bearing designers. This study deals with the numerical simulation of a magneto-rheological fluid–lubricated two-lobe hybrid slot-entry journal bearing. To make the operating condition more exact and realistic, the influence of geometric imperfection of the journal arising from manufacturing inaccuracies and thermal effect has been considered. Dave magneto-rheological fluid model, a constitutive relation of the Bingham model, and finite element method have been used in this article to simulate the behavior of the magneto-rheological fluid in a slot-entry bearing. The results indicate that the heat generated because of viscous friction rises the temperature of the magneto-rheological fluid, which changes the bearing performance significantly. Considering barrel-shaped journal and magneto-rheological fluid (applied current, Ic = 4 A), the performance of two-lobe slot-entry bearing is superior in terms of the value of [Formula: see text] approximately by a magnitude of 2%, 41%, 181%, 168%, 75%, and 41%, respectively, as compared to that of the base bearing (smooth [Formula: see text], two-lobe bearing, operating with a Newtonian fluid, Ic = 0 A).
Purpose
This study aims to deal with the performance of symmetric/asymmetric slot entry hybrid journal bearing system considering the effect of three dimensional irregularities in the analysis.
Design/methodology/approach
The asperity profile of three-dimensional irregularities has been modeled in both circumferential and axial directions. To compute the bearing performance characteristics parameter, finite element formulation of governing Reynolds equation has been derived using Galerkin’s technique.
Findings
Based on the numerically simulated results, it has been observed that the three-dimensional irregularities enhance the value of minimum fluid film thickness (h̄min), lubricant flow (Q̄) and fluid film damping coefficients (C̄11,C̄22) approximately by order of magnitude of 24-26, 43-51 and 18-66 per cent, respectively, for the case of asymmetric slot entry configuration. Whereas, the values of fluid film stiffness coefficients (S̄11,S̄22) and threshold speed (ω̄th) reduces approximately by order of 1-6 and 0-3 per cent, respectively, for the case of symmetric slot entry configuration.
Originality/value
The present paper describes that the influence of three-dimensional irregularities on bearing surface on the performance of slot entry hybrid journal bearing is original in literature gaps. The numerically simulated results presented in this study are expected to be quite useful to the bearing designers.
The behavior of a slot-entry hybrid herringbone-grooved journal-bearing system lubricated with a ferrofluid lubricant has been numerically studied. The modified Reynolds equation of a ferrofluid bearing model based on the Stokes micro-continuum theory has been numerically solved by a finite-element method. A MATLAB code based on the Gauss–Seidel iteration scheme has been solved to numerically simulate the bearing performance. The simulated results reveal that the use of a ferrofluid lubricant provides enhanced values of lubricant film thickness, fluid film stiffness/damping coefficient, and better stability threshold speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.