C-MYC, a transforming oncogene that is frequently overexpressed in many human cancers, regulates a variety of normal functions including cell cycle progression, apoptosis, and maintenance of cell size, morphology, and genomic integrity. Many target genes are modulated by c-Myc, and some can recapitulate a limited number of the above functions. Because most of these have been assessed in cells which also express endogenous c-Myc, however, it is not clear to what extent its proper regulation is also required. We show here that, in c-Myc nullizygous cells, two direct target genes, MT-MC1 and HMG-I, could each recapitulate multiple c-Myc phenotypes. Although these differ somewhat for the two genes, substantial overlap and cooperativity exist. The enforced expression of these two genes was also associated with the differential deregulation of some previously described c-Myc target genes, indicating the presence of a complex molecular circuitry. These observations argue that, despite the great diversity of gene regulation by c-Myc, many, although not all, of its functions can be phenocopied by a small subset of key downstream target genes. The approach described here should permit the identification of other target genes capable of further c-Myc-independent complementation. (Cancer Res 2005; 65(6): 2097-107)
The c-Myc (Myc) oncoprotein regulates numerous phenotypes pertaining to cell mass, survival and metabolism. Glycolysis, oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis are positively controlled by Myc, with myc−/− rat fibroblasts displaying atrophic mitochondria, structural and functional defects in electron transport chain (ETC) components, compromised OXPHOS and ATP depletion. However, while Myc influences mitochondrial structure and function, it is not clear to what extent the reverse is true. To test this, we induced a state of mitochondrial hyper-fission in rat fibroblasts by de-regulating Drp1, a dynamin-like GTPase that participates in the terminal fission process. The mitochondria from these cells showed reduced mass and interconnectivity, a paucity of cristae, a marked reduction in OXPHOS and structural and functional defects in ETC Complexes I and V. High rates of abortive mitochondrial fusion were observed, likely reflecting ongoing, but ultimately futile, attempts to normalize mitochondrial mass. Cellular consequences included reduction of cell volume, ATP depletion and activation of AMP-dependent protein kinase. In response to Myc deregulation, apoptosis was significantly impaired both in the absence and presence of serum, although this could be reversed by increasing ATP levels by pharmacologic means. The current work demonstrates that enforced mitochondrial fission closely recapitulates a state of Myc deficiency and that mitochondrial integrity and function can affect Myc-regulated cellular behaviors. The low intracellular ATP levels that are frequently seen in some tumors as a result of inadequate vascular perfusion could favor tumor survival by countering the pro-apoptotic tendencies of Myc overexpression.
<div>Abstract<p><i>C-MYC</i>, a transforming oncogene that is frequently overexpressed in many human cancers, regulates a variety of normal functions including cell cycle progression, apoptosis, and maintenance of cell size, morphology, and genomic integrity. Many target genes are modulated by c-Myc, and some can recapitulate a limited number of the above functions. Because most of these have been assessed in cells which also express endogenous c-Myc, however, it is not clear to what extent its proper regulation is also required. We show here that, in c-Myc nullizygous cells, two direct target genes, <i>MT-MC1</i> and <i>HMG-I</i>, could each recapitulate multiple c-Myc phenotypes. Although these differ somewhat for the two genes, substantial overlap and cooperativity exist. The enforced expression of these two genes was also associated with the differential deregulation of some previously described c-Myc target genes, indicating the presence of a complex molecular circuitry. These observations argue that, despite the great diversity of gene regulation by c-Myc, many, although not all, of its functions can be phenocopied by a small subset of key downstream target genes. The approach described here should permit the identification of other target genes capable of further c-Myc–independent complementation.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.