In this systematic umbrella review we aggregate the current knowledge of how virtual and augmented reality technologies are applicable to and impact remote learning in higher education; specifically, how they impact such learning outcomes as performance and engagement in all stages of higher education from course preparation to student evaluation and grading. This review was done as part of a state wide research effort of Latvia, to mitigate the impact of COVID-19 and specifically to provide a framework for a technological transformation of education in this context. In this work we search the Scopus and Web of Science databases for articles describing the use of virtual and/or augmented reality technologies in remote learning for higher education and their impact on learning outcomes. We identified 68 articles from which, after multiple screening and eligibility phases, nine review articles were left for extraction phase in which 30 structural elements with corresponding interventions and measured effects were extracted. Of these, 24 interventions had a measured effect on student performance (11 positive, seven negative, six no impact) and six interventions had a measured effect on student engagement (all six positive).
Wireless sensor networks (WSNs) have been a widely researched field since the beginning of the 21st century. The field is already maturing, and TinyOS has established itself as the de facto standard WSN Operating System (OS). However, the WSN researcher community is still active in building more flexible, efficient and user-friendly WSN operating systems. Often, WSN OS design is based either on practical requirements of a particular research project or research group's needs or on theoretical assumptions spread in the WSN community. The goal of this paper is to propose WSN OS design rules that are based on a thorough survey of 40 WSN deployments. The survey unveils trends of WSN applications and provides empirical substantiation to support widely usable and flexible WSN operating system design
In this paper a novel portable posture monitoring and feedback system is proposed. System is designed to be unobtrusively used during daily activities and provide alternative solution to traditional bracing used in treatment of scoliosis. System consists of wearable sensor network for posture data acquisition, wireless data transmission and conventional smartphone for data processing, visualization and vibrating feedback generation. Special data acquisition board is designed for data sampling from sensor network and wireless transmission to smartphone. A custom made Android application is used for real time data processing, current posture model visualization, data logging and instantaneous feedback. System was tested for posture monitoring and feedback generation on multiple test subjects. Tests demonstrated systems effectiveness on improving posture related behavior and ability to help subject to hold specific reference posture performing similar task as traditional bracing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.