Background: Dilated cardiomyopathy (DCM) is a condition characterized by dilatation and systolic dysfunction of the left ventricle in the absence of severe coronary artery disease or abnormal loading conditions. Mutations in the titin (TTN) and lamin A/C (LMNA) genes are the two most significant contributors in familial DCM. Previously mutations in the desmoplakin (DSP) gene have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC) and more recently with DCM. Methods: We describe the cardiac phenotype related to a DSP mutation which was identified in ten unrelated Finnish index patients using next-generation sequencing. Sanger sequencing was used to verify the presence of this DSP variant in the probands' relatives. Medical records were obtained, and clinical evaluation was performed. Results: We identified DSP c.6310delA, p.(Thr2104Glnfs*12) variant in 17 individuals of which 11 (65%) fulfilled the DCM diagnostic criteria. This pathogenic variant presented with left ventricular dilatation, dysfunction and major ventricular arrhythmias. Two patients showed late gadolinium enhancement (LGE) and myocardial edema on cardiac magnetic resonance imaging (MRI) that may suggest inflammatory process at myocardium. Conclusions: The patients diagnosed with DCM showed an arrhythmogenic phenotype as well as SCD at young age supporting the recently proposed concept of arrhythmogenic cardiomyopathy. This study also demonstrates relatively low penetrance of truncating DSP variant in the probands' family members by the age of 40. Further studies are needed to elucidate the possible relations between myocardial inflammation and pathogenic DSP variants.
Background Familial dilated cardiomyopathy (DCM) is typically a monogenic disorder with dominant inheritance. Although over 40 genes have been linked to DCM, more than half of the patients undergoing comprehensive genetic testing are left without molecular diagnosis. Recently, biallelic protein-truncating variants (PTVs) in the nebulin-related anchoring protein gene (NRAP) were identified in a few patients with sporadic DCM. Methods and results We determined the frequency of rare NRAP variants in a cohort of DCM patients and control patients to further evaluate role of this gene in cardiomyopathies. A retrospective analysis of our internal variant database consisting of 31,639 individuals who underwent genetic testing (either panel or direct exome sequencing) was performed. The DCM group included 577 patients with either a confirmed or suspected DCM diagnosis. A control cohort of 31,062 individuals, including 25,912 individuals with non-cardiac (control group) and 5,150 with non-DCM cardiac indications (Non-DCM cardiac group). Biallelic (n = 6) or two (n = 5) NRAP variants (two PTVs or PTV+missense) were identified in 11 unrelated probands with DCM (1.9%) but none of the controls. None of the 11 probands had an alternative molecular diagnosis. Family member testing supports co-segregation. Biallelic or potentially biallelic NRAP variants were enriched in DCM vs. controls (OR 1052, p<0.0001). Based on the frequency of NRAP PTVs in the gnomAD reference population, and predicting full penetrance, biallelic NRAP variants could explain 0.25%-2.46% of all DCM cases. Conclusion Loss-of-function in NRAP is a cause for autosomal recessive dilated cardiomyopathy, supporting its inclusion in comprehensive genetic testing.
Background Genetic testing in hypertrophic cardiomyopathy (HCM) is a published guideline-based recommendation. The diagnostic yield of genetic testing and corresponding HCM-associated genes have been largely documented by single center studies and carefully selected patient cohorts. Our goal was to evaluate the diagnostic yield of genetic testing in a heterogeneous cohort of patients with a clinical suspicion of HCM, referred for genetic testing from multiple centers around the world. Methods A retrospective review of patients with a suspected clinical diagnosis of HCM referred for genetic testing at Blueprint Genetics was undertaken. The analysis included syndromic, myopathic and metabolic etiologies. Genetic test results and variant classifications were extracted from the database. Variants classified as pathogenic (P) or likely pathogenic (LP) were considered diagnostic. Results A total of 1376 samples were analyzed. Three hundred and sixty-nine tests were diagnostic (26.8%); 373 P or LP variants were identified. Only one copy number variant was identified. The majority of diagnostic variants involved genes encoding the sarcomere (85.0%) followed by 4.3% of diagnostic variants identified in the RASopathy genes. Two percent of diagnostic variants were in genes associated with a cardiomyopathy other than HCM or an inherited arrhythmia. Clinical variables that increased the likelihood of identifying a diagnostic variant included: an earlier age at diagnosis (p < 0.0001), a higher maximum wall thickness (MWT) (p < 0.0001), a positive family history (p < 0.0001), the absence of hypertension (p = 0.0002), and the presence of an implantable cardioverter-defibrillator (ICD) (p = 0.0004). Conclusion The diagnostic yield of genetic testing in this heterogeneous cohort of patients with a clinical suspicion of HCM is lower than what has been reported in well-characterized patient cohorts. We report the highest yield of diagnostic variants in the RASopathy genes identified in a laboratory cohort of HCM patients to date. The spectrum of genes implicated in this unselected cohort highlights the importance of pre-and post-test counseling when offering genetic testing to the broad HCM population.
Background: Familial dilated cardiomyopathy (DCM) is a monogenic disorder typically inherited in an autosomal dominant pattern. We have identified two Finnish families with familial cardiomyopathy that is not explained by a variant in any previously known cardiomyopathy gene. We describe the cardiac phenotype related to homozygous truncating GCOM1 variants.Methods and Results: This study included two probands and their relatives. All the participants are of Finnish ethnicity. Whole-exome sequencing was used to test the probands; bi-directional Sanger sequencing was used to identify the GCOM1 variants in probands’ family members. Clinical evaluation was performed, medical records and death certificates were obtained. Immunohistochemical analysis of myocardial samples was conducted. A homozygous GCOM1 variant was identified altogether in six individuals, all considered to be affected. None of the nine heterozygous family members fulfilled any cardiomyopathy criteria. Heart failure was the leading clinical feature, and the patients may have had a tendency for atrial arrhythmias.Conclusions: This study demonstrates the significance of GCOM1 variants as a cause of human cardiomyopathy and highlights the importance of searching for new candidate genes when targeted gene panels do not yield a positive outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.