Hereditary nevoid basal cell carcinoma syndrome (NBCCS) is caused by PTCH1 gene mutations that result in diverse neoplasms including medulloblastoma (MB). Epidemiological studies report reduced pediatric brain tumor risks associated with maternal intake of prenatal vitamins containing folic acid (FA) and FA supplements specifically. We hypothesized that low maternal FA intake during the peri-gestational period would increase MB incidence in a transgenic NBCCS mouse model, which carries an autosomal dominant mutation in the Ptch1 gene. Female wild-type C57BL/6 mice (n=126) were randomized to one of three diets with differing FA amounts: 0.3 mg/kg (low), 2.0 mg/kg (control), and 8.0 mg/kg (high) one month prior to mating with Ptch1+/− C57BL/6 males. Females were maintained on the diet until pup weaning; the pups were then aged for tumor development. Compared to the control group, offspring MB incidence was significantly lower in the low FA group (Hazard Ratio (HR)=0.47; 95% confidence interval (CI) 0.27–0.80) at one year. No significant difference in incidence was observed between the control and high FA groups. Low maternal peri-gestational FA levels may decrease MB incidence in mice genetically predisposed to tumor development. Our results could have implications for prenatal FA intake recommendations in the presence of cancer syndromes.
Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.