Developments of the PDB_REDO procedure that combine re-refinement and rebuilding within a unique decision-making framework to improve structures in the PDB are presented. PDB_REDO uses a variety of existing and custom-built software modules to choose an optimal refinement protocol (e.g. anisotropic, isotropic or overall B-factor refinement, TLS model) and to optimize the geometry versus data-refinement weights. Next, it proceeds to rebuild side chains and peptide planes before a final optimization round. PDB_REDO works fully automatically without the need for intervention by a crystallographic expert. The pipeline was tested on 12 000 PDB entries and the great majority of the test cases improved both in terms of crystallographic criteria such as R
free and in terms of widely accepted geometric validation criteria. It is concluded that PDB_REDO is useful to update the otherwise `static' structures in the PDB to modern crystallographic standards. The publically available PDB_REDO database provides better model statistics and contributes to better refinement and validation targets.
Motivation: Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better fit their corresponding experimental data, passing the benefits of new methods in crystallography on to a wide base of non-crystallographer structure users.Results: We developed new algorithms to allow automatic rebuilding and remodeling of main chain peptide bonds and side chains in crystallographic electron density maps, and incorporated these and further enhancements in the PDB_REDO procedure. Applying the updated PDB_REDO to the oldest, but also to some of the newest models in the PDB, corrects existing modeling errors and brings these models to a higher quality, as judged by standard validation methods.Availability and Implementation: The PDB_REDO database and links to all software are available at http://www.cmbi.ru.nl/pdb_redo.Contact: r.joosten@nki.nl; a.perrakis@nki.nlSupplementary Information: Supplementary data are available at Bioinformatics online.
A novel method that uses the conformational distribution of Cα atoms in known structures is used to build short missing regions (‘loops’) in protein models. An initial tree of possible loop paths is pruned according to structural and electron-density criteria and the most likely loop conformation(s) are selected and built.
SummaryThe automated building of a protein model into an electron density map remains a challenging problem. In the ARP/wARP approach, model building is facilitated by initially interpreting a density map with free atoms of unknown chemical identity; all structural information for such chemically unassigned atoms is discarded. Here, this is remedied by applying restraints between free atoms, and between free atoms and a partial protein model. These are based on geometric considerations of protein structure and tentative (conditional) assignments for the free atoms. Restraints are applied in the REFMAC5 refinement program and are generated on an ad hoc basis, allowing them to fluctuate from step to step. A large set of experimentally phased and molecular replacement structures showcases individual structures where automated building is improved drastically by the conditional restraints. The concept and implementation we present can also find application in restraining geometries, such as hydrogen bonds, in low-resolution refinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.