CD11c + T-bet + B cells generated during ehrlichial infection require CD4 + T cell help and IL-21 signaling for their development, but the exact T cell subset required had not been known. In this study, we show in a mouse model of Ehrlichia muris that type 1 T follicular helper (T FH1 ) cells provide help to CD11c + T-bet + B cells via the dual secretion of IL-21 and IFN-g in a CD40/CD40Ldependent manner. T FH1 cell help was delivered in two phases: IFN-g signals were provided early in infection, whereas CD40/ CD40L help was provided late in infection. In contrast to T-bet + T cells, T-bet + B cells did not develop in the absence of B cellintrinsic Bcl-6 but were generated in the absence of T-bet. T-bet-deficient memory B cells were largely indistinguishable from their wild-type counterparts, although they no longer underwent switching to IgG2c. These data suggest that a primary function of T-bet in B cells during ehrlichial infection is to promote appropriate class switching, not lineage specification. Thus, CD11c + memory B cells develop normally without T-bet but require Bcl-6 and specialized help from dual cytokine-producing T FH1 cells.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic human respiratory illness COVID-19, is a global health emergency. While severe acute disease has been linked to an expansion of antibody-secreting plasmablasts, we sought to identify B cell responses that correlated with positive clinical outcomes in convalescent patients. We characterized the peripheral blood B cell immunophenotype and plasma antibody responses in 40 recovered non-hospitalized COVID-19 subjects that were enrolled as donors in a convalescent plasma treatment study. We observed a significant negative correlation between the frequency of peripheral blood memory B cells and the duration of symptoms for convalescent subjects. Memory B cell subsets in convalescent subjects were composed of classical CD24+ class-switched memory B cells, but also activated CD24-negative and natural unswitched CD27+ IgD+ IgM+ subsets. Memory B cell frequency was significantly correlated with both IgG1 and IgM responses to the SARS-CoV-2 spike protein receptor binding domain (RBD) in most seropositive subjects. IgM+ memory, but not switched memory, directly correlated with virus-specific antibody responses, and remained stable over 3 months. Our findings suggest that the frequency of memory B cells is a critical indicator of disease resolution, and that IgM+ memory B cells may play an important role in SARS-CoV-2 immunity.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic human respiratory illness COVID-19, is a global health emergency. While severe acute disease has been linked to an expansion of antibody-secreting plasmablasts, we sought to identify B cell responses that correlated with positive clinical outcomes in convalescent patients. We characterized the peripheral blood B cell immunophenotype and plasma antibody responses in 40 recovered non-hospitalized COVID-19 subjects that were enrolled as donors in a convalescent plasma treatment study. We observed a significant negative correlation between the frequency of peripheral blood memory B cells and the duration of symptoms for convalescent subjects. Memory B cell subsets in convalescent subjects were composed of classical CD24+ class-switched memory B cells, but also activated CD24-negative and natural unswitched CD27+ IgD+ IgM+ subsets. Memory B cell frequency was significantly correlated with both IgG1 and IgM responses to the SARS-CoV-2 spike protein receptor binding domain (RBD). IgM+ memory, but not switched memory, directly correlated with virus-specific antibody responses, and remained stable over time. Our findings suggest that the frequency of memory B cells is a critical indicator of disease resolution, and that IgM+ memory B cells play an important role in SARS-CoV-2 immunity.
CD11c+T-bet+ B cells are recognized as an important component of humoral immunity and autoimmunity. These cells can be distinguished from other B cells by their higher expression of the adenosine receptor 2a. Here we address whether A2A receptor activation can affect CD11c+T-bet+ B cells. We show that administration of the A2A receptor agonist CGS-21680 depletes established CD11c+T-bet+ B cells in ehrlichial-infected mice, in a B cell-intrinsic manner. Agonist treatment similarly depletes CD11c+T-bet+ B cells and CD138+ B cells and reduces anti-nuclear antibodies in lupus-prone mice. Agonist treatment is also associated with reduced kidney pathology and lymphadenopathy. Moreover, A2A receptor stimulation depletes pathogenic lymphocytes and ameliorates disease even after disease onset, highlighting the therapeutic potential of this treatment. This study suggests that targeting the adenosine signaling pathway may provide a method for the treatment of lupus and other autoimmune diseases mediated by T-bet+ B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.