Epidemiological studies have established an association between air pollution particulate matter exposure (PM2.5) and neurocognitive decline. Experimental data suggest that microglia play an essential role in air pollution PM-induced neuroinflammation and oxidative stress. This study examined the effect of nano-sized particulate matter (nPM) on complement C5 deposition and microglial activation in the corpus callosum of mice (C57BL/6J males). nPM was collected in an urban Los Angeles region impacted by traffic emissions. Mice were exposed to 10 weeks of re-aerosolized nPM or filtered air for a cumulative 150 hours. nPM-exposed mice exhibited reactive microglia and 2-fold increased local deposition of complement C5/ C5α proteins and complement component C5a receptor 1 (CD88) in the corpus callosum. However, serum C5 levels did not differ between nPM and filtered air cohorts. These findings demonstrate white matter C5 deposition and microglial activation secondary to nPM exposure. The C5 upregulation appears to be localized to the brain.
Background: Exposure to ambient air pollution particulate matter (PM) is associated with increased risk of dementia and accelerated cognitive loss. Vascular contributions to cognitive impairment are well recognized. Chronic cerebral hypoperfusion (CCH) promotes neuroinflammation and blood–brain barrier weakening, which may augment neurotoxic effects of PM. Objectives: This study examined interactions of nanoscale particulate matter (nPM; fine particulate matter with aerodynamic diameter ) and CCH secondary to bilateral carotid artery stenosis (BCAS) in a murine model to produce white matter injury. Based on other air pollution interactions, we predicted synergies of nPM with BCAS. Methods: nPM was collected using a particle sampler near a Los Angeles, California, freeway. Mice were exposed to 10 wk of reaerosolized nPM or filtered air (FA) for 150 h. CCH was induced by BCAS surgery. Mice (C57BL/6J males) were randomized to four exposure paradigms: a ) FA, b ) nPM, c ) , and d ) . Behavioral outcomes, white matter injury, glial cell activation, inflammation, and oxidative stress were assessed. Results: The joint group exhibited synergistic effects on white matter injury (2.3× the additive nPM and scores) with greater loss of corpus callosum volume on T2 magnetic resonance imaging (MRI) (30% smaller than FA group). Histochemical analyses suggested potential microglial-specific inflammatory responses with synergistic effects on corpus callosum C5 immunofluorescent density and whole brain nitrate concentrations (2.1× and 3.9× the additive nPM and effects, respectively) in the joint exposure group. Transcriptomic responses (RNA-Seq) showed greater impact of than individual additive effects, consistent with changes in proinflammatory pathways. Although nPM exposure alone did not alter working memory, the cohort demonstrated impaired working memory when compared to the group. Discussion: Our data suggest that nPM and CCH contribute to white matter injury in a synergistic manner in a mouse model. Adverse neurological effects may be aggravated in a susceptible population exposed to air pollution. https://doi.org/10.1289/EHP8792
Background: Air pollution is widely associated with accelerated cognitive decline at later ages and risk of Alzheimer’s disease (AD). Correspondingly, rodent models demonstrate the neurotoxicity of ambient air pollution and its components. Our studies with nano-sized particulate matter (nPM) from urban Los Angeles collected since 2009 have shown pro-amyloidogenic and pro-inflammatory responses. However, recent batches of nPM have diminished induction of the glutamate receptor GluA1 subunit, Iba1, TNFα, Aβ 42 peptide, and white matter damage. The same methods, materials, and mouse genotypes were used throughout. Objective: Expand the nPM batch comparisons and evaluate archived brain samples to identify the earliest change in nPM potency. Methods: Batches of nPM were analyzed by in vitro cell assays for NF-κB and Nrf2 induction for comparison with in vivo responses of mouse brain regions from mice exposed to these batches, analyzed by PCR and western blot. Results: Five older nPM batches (2009–2017) and four recent nPM batches (2018, 2019) for NF-κB and Nrf2 induction showed declines in nPM potency after 2017 that paralleled declines of in vivo activity from independent exposures in different years. Conclusion: Transcription-based in vitro assays of nPM corresponded to the loss of in vivo potency for inflammatory and oxidative responses. These recent decreases of nPM neurotoxicity give a rationale for evaluating possible benefits to the risk of dementia and stroke in Los Angeles populations.
Fine and ultra-fine particulate matter (PM) are major constituents of urban air pollution and recognized risk factors for cardiovascular diseases. This review examined the effects of PM exposure on vascular tissue. Specific mechanisms by which PM affects the vasculature include inflammation, oxidative stress, actions on vascular tone and vasomotor responses, as well as atherosclerotic plaque formation. Further, there appears to be a greater PM exposure effect on susceptible individuals with pre-existing cardiovascular conditions.
Exposure to ambient air pollution has been associated with white matter damage and neurocognitive decline. However, the mechanisms of this injury are not well understood and remain largely uncharacterized in experimental models. Prior studies have shown that exposure to particulate matter (PM), a sub-fraction of air pollution, results in neuroinflammation, specifically the upregulation of inflammatory microglia. This study examines white matter and axonal injury, and characterizes microglial reactivity in the corpus callosum of mice exposed to 10 weeks (150 hours) of PM. Nanoscale particulate matter (nPM, aerodynamic diameter ≤200 nm) consisting primarily of traffic-related emissions was collected from an urban area in Los Angeles. Male C57BL/6J mice were exposed to either re-aerosolized nPM or filtered air for 5 hours/day, 3 days/week, for 10 weeks (150 hours; n = 18/group). Microglia were characterized by immunohistochemical double staining of ionized calcium-binding protein-1 (Iba-1) with inducible nitric oxide synthase (iNOS) to identify pro-inflammatory cells, and Iba-1 with arginase-1 (Arg) to identify anti-inflammatory/ homeostatic cells. Myelin injury was assessed by degraded myelin basic protein (dMBP). Oligodendrocyte cell counts were evaluated by oligodendrocyte transcription factor 2 (Olig2). Axonal injury was assessed by axonal neurofilament marker SMI-312. iNOS-expressing microglia were significantly increased in the corpus callosum of mice exposed to nPM when compared to those exposed to filtered air (2.2 fold increase; p<0.05). This was accompanied by an increase in dMBP (1.4 fold increase; p<0.05) immunofluorescent density, a decrease in oligodendrocyte cell counts (1.16 fold decrease; p<0.05), and a decrease in neurofilament SMI-312 (1.13 fold decrease; p<0.05) immunofluorescent density. Exposure to nPM results in increased inflammatory microglia, white matter injury, and axonal degradation in the corpus callosum of adult male mice. iNOS-expressing microglia release cytokines and reactive oxygen/ nitrogen species which may further contribute to the white matter damage observed in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.