Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5% cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.
This paper presents a practical method for the development of spectral reflectance libraries under sub-optimal sky conditions. Although there are commercially available spectrometers which simultaneously measure both downwelling and upwelling radiance to mitigate the impact of sub-optimal sky conditions, these spectrometers only record in the visible and near infra-red. There are presently no commercially available spectrometers with this capability that can record the visible through shortwave infra-red. This paper presents a practical method of recording and processing data using coordinated measurements from two full-range spectrometers and discusses potential pitfalls and solutions required to achieve accurate reflectance spectra. Results demonstrate that high-quality spectral reflectance libraries can be developed with this approach. A. White, C. A. Jones, and K. Lee, "Coastal characterization from hyperspectral imagery: an intercomparison of retrieval properties from three coast types," in ©2012 Optical Society of America
Standard Form 298 (Rev. 8-98)Prescribed by ANSI Std. Z39.18Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. This report describes the data collected during one of a series of Naval Research Laboratory (NRL) remote sensing and calibration and validation (Cal/Val) campaigns, providing data and information for the development of models of coast types and their associated environmental factors. Models allow rapid processing of hyperspectral imagery (HSI), generating shallow water bathymetric charts and trafficability maps. Cal/Val data collected during the Mariana Islands Hyperspectral Airborne Remote Environmental Sensing 2010 (MIHARES 2010) campaign focused on spectral and geotechnical library development, bathymetry, and location of WWII remnant hazards on Pagan, Tinian, and Guam. Ground control data collected during the remote sensing experiment will be useful in building digital elevation models and maps for remote areas such as Pagan, a volcanic island in the Commonwealth of the Northern Mariana Islands (CNMI). Surveyed calibration panels, WWII relics, and underwater panels are all useful in developing anomaly detection algorithms. The primary purpose of this memorandum report is to summarize imagery collections and all Cal/Val data and the project geodatabase, with products described in future publications. REPORT TYPE 1. REPORT DATE (DD-MM-YYYY) TITLE AND SUBTITLE AUTHOR(S) PERFORMING ORGANIZATION REPORT NUMBER PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) SPONSOR / MONITOR'S ACRONYM(S) 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) SPONSOR / MONITOR'S REPORT NUMBER(S)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.